login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158378
a(1) = 0, a(n) = gcd(A051904(n), A051903(n)) for n >= 2.
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
a(n) for n >= 2 equals GCD of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 it deviates from A052409(n), first different term is a(10800) = a(2^4*3^3*5^2), a(10800) = gcd(2,4) = 2, A052409(10800) = gcd(2,3,4) = 1.
FORMULA
For n >= 2 holds: a(n)*A157754(n) = A051904(n)*A051903(n).
a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Sep 11 2024
EXAMPLE
For n = 12 = 2^2 * 3^1 we have a(12) = gcd(2,1) = 1.
MATHEMATICA
Table[GCD @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(PARI)
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A051904(n) = if((1==n), 0, vecmin(factor(n)[, 2]));
A158378(n) = gcd(A051903(n), A051904(n)); \\ Antti Karttunen, Jul 12 2017
(PARI) a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); gcd(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 17 2009
STATUS
approved