|
|
|
|
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
a(n) for n >= 2 equals LCM of minimal and maximal exponents in prime factorization of n. a(n) for n >= 2 deviates from (A072411), first different term is a(360), a(360) = 3, A072411(360)= 6.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..10000
Index entries for sequences computed from exponents in factorization of n
Index entries for sequences related to lcm's
|
|
FORMULA
|
a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
|
|
EXAMPLE
|
For n = 12 = 2^2 * 3^1 we have a(12) = lcm(2,1) = 2.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(4,2) = 4.
|
|
MATHEMATICA
|
Table[LCM @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
|
|
CROSSREFS
|
Cf. A000040, A003990, A006881, A120944, A000961, A000027, A072411, A051904, A051903, A158378.
Sequence in context: A070014 A051903 A324912 * A072411 A290107 A212180
Adjacent sequences: A157751 A157752 A157753 * A157755 A157756 A157757
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jaroslav Krizek, Mar 05 2009
|
|
STATUS
|
approved
|
|
|
|