The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157752 Smallest positive integer m such that m == prime(i) (mod prime(i+1)) for all 1<=i<=n. 4
 2, 8, 68, 1118, 2273, 197468, 1728998, 1728998, 447914738, 10152454583, 1313795640428, 97783391392958, 5726413266646343, 38433316595821418, 15103232990013860963, 943894249589930135768, 52858423703753671390658, 932521283899305953765183, 8790842834979573009644273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suggested by Chinese Remainder Theorem. a(n) is prime for n = 1, 5, 10, 23, 30. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..349 MAPLE A157752 := proc(n) local lrem, leval, i ; lrem := [] ; leval := [] ; for i from 1 to n do lrem := [op(lrem), ithprime(i+1)] ; leval := [op(leval), ithprime(i)] ; end do: chrem(leval, lrem) ; end proc: # R. J. Mathar, Apr 14 2016 MATHEMATICA a[n_] := ChineseRemainder[Prime[Range[n]], Prime[Range[2, n + 1]]] a[ # ] & /@ Range[30] Table[With[{pr=Prime[Range[n]]}, ChineseRemainder[Most[pr], Rest[pr]]], {n, 2, 30}] (* Harvey P. Dale, Jun 11 2017 *) PROG (PARI) x=Mod(1, 1); for(i=1, 20, x=chinese(x, Mod(prime(i), prime(i+1))); print1(component(x, 2), ", ")) (Python) from sympy.ntheory.modular import crt from sympy import prime def A157752(n): return int(crt((s:=[prime(i+1) for i in range(1, n)])+[prime(n+1)], [2]+s)[0]) # Chai Wah Wu, May 02 2023 CROSSREFS Cf. A053664, A071057, A121934. Sequence in context: A262479 A372315 A192550 * A055547 A113087 A322495 Adjacent sequences: A157749 A157750 A157751 * A157753 A157754 A157755 KEYWORD nonn AUTHOR Zak Seidov, Mar 05 2009 EXTENSIONS Edited by Charles R Greathouse IV, Oct 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 18:59 EDT 2024. Contains 372765 sequences. (Running on oeis4.)