login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322495
Number of tilings of an n X n square using V (2m+1)-ominoes (m >= 0) in standard orientation.
1
1, 1, 2, 8, 68, 1262, 51420, 4577274, 888837716, 376116199534, 346688563051200, 695975307003529228
OFFSET
0,3
COMMENTS
The shapes of the tiles are:
._.
._. | |
._. | | | |
._. | |_. | |_._. | |_._._.
|_| |___| |_____| |_______| ... .
EXAMPLE
a(3) = 8:
._____. ._____. ._____. ._____. ._____. ._____. ._____. ._____.
|_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_| | |_|_| | | |_|
|_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___| | |_|_| | |___|
|_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_| |_____| |_____|.
.
MAPLE
b:= proc(n, l) option remember; local k, m, r;
if n=0 or l=[] then 1
elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
elif l[-1]=n then b(n, subsop(-1=[][], l))
else for k while l[k]>0 do od; r:= 0;
for m from 0 while k+m<=nops(l) and l[k+m]=0 and n>m do
r:= r+b(n, [l[1..k-1][], 1$m, m+1, l[k+m+1..nops(l)][]])
od; r
fi
end:
a:= n-> b(n, [0$n]):
seq(a(n), n=0..9);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{k, m, r}, Which[n == 0 || l == {}, 1, Min[l] > 0, Function[t, b[n-t, l-t]][Min[l]], l[[-1]] == n, b[n, ReplacePart[l, -1 -> Nothing]], True, For[k = 1, l[[k]] > 0, k++]; r = 0; For[m = 0, k + m <= Length[l] && l[[k+m]] == 0 && n > m, m++, r = r + b[n, Join[l[[1 ;; k-1]], Array[1&, m], {m+1}, l[[k+m+1 ;; Length[l]]]]]]; r]];
a[n_] := b[n, Array[0&, n]];
a /@ Range[0, 9] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A322494.
Sequence in context: A157752 A055547 A113087 * A332637 A239843 A099729
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Dec 12 2018
STATUS
approved