login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322494 Number A(n,k) of tilings of a k X n rectangle using V (2m+1)-ominoes (m >= 0) in standard orientation; square array A(n,k), n>=0, k>=0, read by antidiagonals. 11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 8, 5, 1, 1, 1, 1, 8, 18, 18, 8, 1, 1, 1, 1, 13, 44, 68, 44, 13, 1, 1, 1, 1, 21, 107, 233, 233, 107, 21, 1, 1, 1, 1, 34, 257, 838, 1262, 838, 257, 34, 1, 1, 1, 1, 55, 621, 2989, 6523, 6523, 2989, 621, 55, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

The shapes of the tiles are:

                       ._.

              ._.      | |

       ._.    | |      | |

  ._.  | |_.  | |_._.  | |_._._.

  |_|  |___|  |_____|  |_______|  ... .

.

The sequence of column k (or row k) satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

LINKS

Alois P. Heinz, Antidiagonals n = 0..23, flattened

Wikipedia, Polyomino

EXAMPLE

A(3,3) = 8:

  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.

  |_|_|_|  | |_|_|  |_|_|_|  |_| |_|  |_|_|_|  |_| |_|  | |_|_|  | | |_|

  |_|_|_|  |___|_|  | |_|_|  |_|___|  |_| |_|  | |___|  | |_|_|  | |___|

  |_|_|_|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |___|_|  |_____|  |_____|.

.

Square array A(n,k) begins:

  1, 1,  1,   1,     1,      1,       1,        1,         1, ...

  1, 1,  1,   1,     1,      1,       1,        1,         1, ...

  1, 1,  2,   3,     5,      8,      13,       21,        34, ...

  1, 1,  3,   8,    18,     44,     107,      257,       621, ...

  1, 1,  5,  18,    68,    233,     838,     2989,     10687, ...

  1, 1,  8,  44,   233,   1262,    6523,    34468,    181615, ...

  1, 1, 13, 107,   838,   6523,   51420,   396500,   3086898, ...

  1, 1, 21, 257,  2989,  34468,  396500,  4577274,  52338705, ...

  1, 1, 34, 621, 10687, 181615, 3086898, 52338705, 888837716, ...

MAPLE

b:= proc(n, l) option remember; local k, m, r;

      if n=0 or l=[] then 1

    elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))

    elif l[-1]=n then b(n, subsop(-1=[][], l))

    else for k while l[k]>0 do od; r:= 0;

         for m from 0 while k+m<=nops(l) and l[k+m]=0 and n>m do

           r:= r+b(n, [l[1..k-1][], 1$m, m+1, l[k+m+1..nops(l)][]])

         od; r

      fi

    end:

A:= (n, k)-> b(max(n, k), [0$min(n, k)]):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, l_] := b[n, l] = Module[{k, m, r}, Which[n == 0 || l == {}, 1, Min[l] > 0, Function[t, b[n-t, l-t]][Min[l]], l[[-1]] == n, b[n, ReplacePart[ l, -1 -> Nothing]], True, For[k=1, l[[k]] > 0, k++]; r = 0; For[m=0, k+m <= Length[l] && l[[k+m]] == 0 && n>m, m++, r = r + b[n, Join[l[[1 ;; k-1]], Array[1&, m], {m+1}, l[[k+m+1 ;; Length[l]]]]]]; r]];

A[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]];

Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Dec 18 2018, after Alois P. Heinz *)

CROSSREFS

Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A322496, A322497, A322498, A322499, A322500, A322501, A322502, A322503.

Main diagonal gives A322495.

Cf. A226444.

Sequence in context: A219924 A226444 A196929 * A258445 A129179 A120621

Adjacent sequences:  A322491 A322492 A322493 * A322495 A322496 A322497

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Dec 12 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 17:17 EDT 2020. Contains 336439 sequences. (Running on oeis4.)