This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219924 Number A(n,k) of tilings of a k X n rectangle using integer sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. 23
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239. LINKS Alois P. Heinz, Antidiagonals n = 0..30, flattened EXAMPLE A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares: ._____.  ._____.  ._____.  ._____.  ._____.  ._____. |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_| |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_| |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_| Square array A(n,k) begins: 1,  1,  1,   1,    1,    1,     1,      1, ... 1,  1,  1,   1,    1,    1,     1,      1, ... 1,  1,  2,   3,    5,    8,    13,     21, ... 1,  1,  3,   6,   13,   28,    60,    129, ... 1,  1,  5,  13,   40,  117,   348,   1029, ... 1,  1,  8,  28,  117,  472,  1916,   7765, ... 1,  1, 13,  60,  348, 1916, 10668,  59257, ... 1,  1, 21, 129, 1029, 7765, 59257, 450924, ... MAPLE b:= proc(n, l) option remember; local i, k, s, t;       if max(l[])>n then 0 elif n=0 or l=[] then 1     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))     else for k do if l[k]=0 then break fi od; s:=0;          for i from k to nops(l) while l[i]=0 do s:=s+            b(n, [l[j]\$j=1..k-1, 1+i-k\$j=k..i, l[j]\$j=i+1..nops(l)])          od; s       fi     end: A:= (n, k)-> `if`(n>=k, b(n, [0\$k]), b(k, [0\$n])): seq(seq(A(n, d-n), n=0..d), d=0..14); # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection: b:= proc(n, l, ll) local i, k, s, t;       if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)     else for k do if l[k]=0 then break fi od; s:=0;          for i from k to nops(l) while l[i]=0 do s:=s+            b(n, [l[j]\$j=1..k-1, 1+i-k\$j=k..i, l[j]\$j=i+1..nops(l)],             [ll[], [k, 1+i-k]])          od; s       fi     end: A:= (n, k)-> b(k, [0\$n], []): A(5, 5); # In each list [a, b] means put a square with side length b at leftmost possible position with upper corner in row a.  For example [[1, 3], [4, 2], [4, 2], [1, 2], [3, 1], [3, 1], [4, 1], [5, 1]], gives: ._____.___. |     |   | |     |___| |_____|_|_| |   |   |_| |___|___|_| MATHEMATICA b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *) CROSSREFS Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929. Main diagonal gives A045846. Cf. A113881, A226545. Sequence in context: A296554 A189006 A245013 * A226444 A196929 A258445 Adjacent sequences:  A219921 A219922 A219923 * A219925 A219926 A219927 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Dec 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 16:06 EST 2018. Contains 318077 sequences. (Running on oeis4.)