This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219924 Number A(n,k) of tilings of a k X n rectangle using integer sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. 23
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239. LINKS Alois P. Heinz, Antidiagonals n = 0..30, flattened EXAMPLE A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:   ._____.  ._____.  ._____.  ._____.  ._____.  ._____.   |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|   |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|   |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_| Square array A(n,k) begins:   1,  1,  1,   1,    1,    1,     1,      1, ...   1,  1,  1,   1,    1,    1,     1,      1, ...   1,  1,  2,   3,    5,    8,    13,     21, ...   1,  1,  3,   6,   13,   28,    60,    129, ...   1,  1,  5,  13,   40,  117,   348,   1029, ...   1,  1,  8,  28,  117,  472,  1916,   7765, ...   1,  1, 13,  60,  348, 1916, 10668,  59257, ...   1,  1, 21, 129, 1029, 7765, 59257, 450924, ... MAPLE b:= proc(n, l) option remember; local i, k, s, t;       if max(l[])>n then 0 elif n=0 or l=[] then 1     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))     else for k do if l[k]=0 then break fi od; s:=0;          for i from k to nops(l) while l[i]=0 do s:=s+            b(n, [l[j]\$j=1..k-1, 1+i-k\$j=k..i, l[j]\$j=i+1..nops(l)])          od; s       fi     end: A:= (n, k)-> `if`(n>=k, b(n, [0\$k]), b(k, [0\$n])): seq(seq(A(n, d-n), n=0..d), d=0..14); # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection: b:= proc(n, l, ll) local i, k, s, t;       if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)     else for k do if l[k]=0 then break fi od; s:=0;          for i from k to nops(l) while l[i]=0 do s:=s+            b(n, [l[j]\$j=1..k-1, 1+i-k\$j=k..i, l[j]\$j=i+1..nops(l)],             [ll[], [k, 1+i-k]])          od; s       fi     end: A:= (n, k)-> b(k, [0\$n], []): A(5, 5); # In each list [a, b] means put a square with side length b at leftmost possible position with upper corner in row a.  For example [[1, 3], [4, 2], [4, 2], [1, 2], [3, 1], [3, 1], [4, 1], [5, 1]], gives: ._____.___. |     |   | |     |___| |_____|_|_| |   |   |_| |___|___|_| MATHEMATICA b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *) CROSSREFS Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929. Main diagonal gives A045846. Cf. A113881, A226545. Sequence in context: A327482 A189006 A245013 * A226444 A196929 A322494 Adjacent sequences:  A219921 A219922 A219923 * A219925 A219926 A219927 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Dec 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 14:44 EDT 2019. Contains 328318 sequences. (Running on oeis4.)