login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219924 Number A(n,k) of tilings of a k X n rectangle using integer sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. 23
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239.

LINKS

Alois P. Heinz, Antidiagonals n = 0..30, flattened

EXAMPLE

A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:

._____.  ._____.  ._____.  ._____.  ._____.  ._____.

|     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|

|     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|

|_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|

Square array A(n,k) begins:

1,  1,  1,   1,    1,    1,     1,      1, ...

1,  1,  1,   1,    1,    1,     1,      1, ...

1,  1,  2,   3,    5,    8,    13,     21, ...

1,  1,  3,   6,   13,   28,    60,    129, ...

1,  1,  5,  13,   40,  117,   348,   1029, ...

1,  1,  8,  28,  117,  472,  1916,   7765, ...

1,  1, 13,  60,  348, 1916, 10668,  59257, ...

1,  1, 21, 129, 1029, 7765, 59257, 450924, ...

MAPLE

b:= proc(n, l) option remember; local i, k, s, t;

      if max(l[])>n then 0 elif n=0 or l=[] then 1

    elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))

    else for k do if l[k]=0 then break fi od; s:=0;

         for i from k to nops(l) while l[i]=0 do s:=s+

           b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])

         od; s

      fi

    end:

A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):

seq(seq(A(n, d-n), n=0..d), d=0..14);

# The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:

b:= proc(n, l, ll) local i, k, s, t;

      if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1

    elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)

    else for k do if l[k]=0 then break fi od; s:=0;

         for i from k to nops(l) while l[i]=0 do s:=s+

           b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],

            [ll[], [k, 1+i-k]])

         od; s

      fi

    end:

A:= (n, k)-> b(k, [0$n], []):

A(5, 5);

# In each list [a, b] means put a square with side length b at

leftmost possible position with upper corner in row a.  For example

[[1, 3], [4, 2], [4, 2], [1, 2], [3, 1], [3, 1], [4, 1], [5, 1]], gives:

._____.___.

|     |   |

|     |___|

|_____|_|_|

|   |   |_|

|___|___|_|

MATHEMATICA

b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Dec 13 2013, translated from 1st Maple program *)

CROSSREFS

Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929.

Main diagonal gives A045846.

Cf. A113881, A226545.

Sequence in context: A193517 A189006 A245013 * A226444 A196929 A258445

Adjacent sequences:  A219921 A219922 A219923 * A219925 A219926 A219927

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Dec 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 06:59 EDT 2017. Contains 284144 sequences.