login
A245013
Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and 2 X 2 squares; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 21, 35, 21, 13, 1, 1, 1, 1, 21, 43, 93, 93, 43, 21, 1, 1, 1, 1, 34, 85, 269, 314, 269, 85, 34, 1, 1, 1, 1, 55, 171, 747, 1213, 1213, 747, 171, 55, 1, 1
OFFSET
0,13
LINKS
R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016.
J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
EXAMPLE
A(3,3) = 5:
._._._. .___._. ._.___. ._._._. ._._._.
|_|_|_| | |_| |_| | |_|_|_| |_|_|_|
|_|_|_| |___|_| |_|___| |_| | | |_|
|_|_|_| |_|_|_| |_|_|_| |_|___| |___|_| .
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
1, 1, 3, 5, 11, 21, 43, 85, ...
1, 1, 5, 11, 35, 93, 269, 747, ...
1, 1, 8, 21, 93, 314, 1213, 4375, ...
1, 1, 13, 43, 269, 1213, 6427, 31387, ...
1, 1, 21, 85, 747, 4375, 31387, 202841, ...
MAPLE
b:= proc(n, l) option remember; local m, k; m:= min(l[]);
if m>0 then b(n-m, map(x->x-m, l))
elif n=0 then 1
else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
`if`(n>1 and k<nops(l) and l[k+1]=0,
b(n, subsop(k=2, k+1=2, l)), 0)
fi
end:
A:= (n, k)-> `if`(min(n, k)<2, 1, b(max(n, k), [0$min(n, k)])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k<Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0]]]]; A[n_, k_] := If[Min[n, k]<2, 1, b[Max[n, k], Table[0, {Min[n, k]}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)
CROSSREFS
Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A001045(n+1), A054854, A054855, A063650, A063651, A063652, A063653, A063654.
Main diagonal gives A063443.
Sequence in context: A377007 A327482 A189006 * A219924 A226444 A196929
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 16 2014
STATUS
approved