The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063650 Number of ways to tile a 6 X n rectangle with 1 X 1 and 2 X 2 tiles. 8
 1, 1, 13, 43, 269, 1213, 6427, 31387, 159651, 795611, 4005785, 20064827, 100764343, 505375405, 2536323145, 12724855013, 63851706457, 320373303983, 1607526474153, 8065864257905, 40471399479495, 203068825478591, 1018918472214687, 5112520236292975, 25652573037707685 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 R. J. Mathar, Tiling nXm rectangles with 1X1 and sXs squares arXiv:1609.03964 [math.CO] (2016) Section 4.1. Index entries for linear recurrences with constant coefficients, signature (2,16,1,-27,1,4). FORMULA G.f.: ( -1+x+5*x^2-x^4 ) / ( -1+2*x+16*x^2+x^3-27*x^4+x^5+4*x^6 ). a(n) = 2a(n-1) + 16a(n-2) + a(n-3) - 27a(n-4) + a(n-5) + 4a(n-6) - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006 MATHEMATICA LinearRecurrence[{2, 16, 1, -27, 1, 4}, {1, 1, 13, 43, 269, 1213}, 22] (* Jean-François Alcover, Oct 30 2018 *) CoefficientList[Series[(-1+x+5*x^2-x^4)/(-1+2*x+16*x^2+x^3-27*x^4+x^5+4*x^6), {x, 0, 50}], x] (* Stefano Spezia, Oct 30 2018 *) PROG (Magma) I:=[1, 1, 13, 43, 269, 1213]; [n le 6 select I[n] else 2*Self(n-1)+16*Self(n-2)+Self(n-3)-27*Self(n-4)+Self(n-5)+4*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 30 2018 CROSSREFS Cf. A001045, A054854, A054855, A063650-A063654. Column k=6 of A245013. Sequence in context: A242547 A242548 A104115 * A220612 A144236 A082689 Adjacent sequences: A063647 A063648 A063649 * A063651 A063652 A063653 KEYWORD nonn AUTHOR Reiner Martin, Jul 23 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 19:56 EDT 2024. Contains 371916 sequences. (Running on oeis4.)