login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377007
Array read by antidiagonals: T(n,k) is the number of inequivalent 2*n X 2*k binary matrices with all row sums k and column sums n up to permutations of rows and columns.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 7, 4, 1, 1, 1, 1, 5, 19, 19, 5, 1, 1, 1, 1, 7, 46, 194, 46, 7, 1, 1, 1, 1, 8, 132, 3144, 3144, 132, 8, 1, 1, 1, 1, 10, 345, 65548, 601055, 65548, 345, 10, 1, 1, 1, 1, 12, 951, 1272696, 128665248, 128665248, 1272696, 951, 12, 1, 1
OFFSET
0,13
COMMENTS
Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A376935. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..119 (first 15 antidiagonals)
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Array begins:
============================================================================
n\k | 0 1 2 3 4 5 6 7 ...
----+-----------------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 3 4 5 7 8 ...
3 | 1 1 3 7 19 46 132 345 ...
4 | 1 1 4 19 194 3144 65548 1272696 ...
5 | 1 1 5 46 3144 601055 128665248 24124134235 ...
6 | 1 1 7 132 65548 128665248 294494683312 607662931576945 ...
7 | 1 1 8 345 1272696 24124134235 607662931576945 14584161564179926207 ...
...
CROSSREFS
Main diagonal is A333740.
Sequence in context: A193517 A296554 A373717 * A327482 A189006 A245013
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Oct 12 2024
STATUS
approved