login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245014
Least prime p such that 2n*4^n divides p + 4n^2 + 1.
2
3, 47, 347, 6079, 10139, 147311, 687931, 18874111, 37748411, 104857199, 276823579, 805305791, 29662117211, 30064770287, 64424508539, 2473901161471, 11098195491707, 7421703486191, 83562883709531, 527765581330879, 369435906930971, 27866022694353007, 19421773393033147
OFFSET
1,1
COMMENTS
All those terms such that 2n*4^n is equal to p + 4n^2 + 1 belong to A247024.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..500
FORMULA
a(n) << n^5*1024^n by Xylouris' version of Linnik's theorem. - Charles R Greathouse IV, Sep 18 2014
MATHEMATICA
a[n_] := With[{k = n*2^(2*n+1)}, p = -4*n^2-1; While[!PrimeQ[p += k]]; p]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Oct 09 2014, translated from Charles R Greathouse IV's PARI code *)
PROG
(PARI) search(u)={ /* Slow, u must be a small integer. */
my(log2=log(2), q, t, t0, L1=List());
forprime(y=3, prime(10^u),
t=log(y+1)\log2;
while(t>t0,
q=4*t^2+y+1;
if(q%(t*(2^(2*t+1)))==0,
listput(L1, [t, y]);
t0=t;
break
,
t--
)));
L1
}
(PARI) a(n)=my(k=n<<(2*n+1), p=-4*n^2-1); while(!isprime(p+=k), ); p \\ Charles R Greathouse IV, Sep 18 2014
CROSSREFS
Cf. A247024.
Sequence in context: A260219 A131465 A277388 * A247024 A137611 A199106
KEYWORD
nonn
AUTHOR
R. J. Cano Sep 17 2014
EXTENSIONS
a(10)-a(23) from Charles R Greathouse IV, Sep 18 2014
STATUS
approved