login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least prime p such that 2n*4^n divides p + 4n^2 + 1.
2

%I #46 Nov 14 2014 18:21:35

%S 3,47,347,6079,10139,147311,687931,18874111,37748411,104857199,

%T 276823579,805305791,29662117211,30064770287,64424508539,

%U 2473901161471,11098195491707,7421703486191,83562883709531,527765581330879,369435906930971,27866022694353007,19421773393033147

%N Least prime p such that 2n*4^n divides p + 4n^2 + 1.

%C All those terms such that 2n*4^n is equal to p + 4n^2 + 1 belong to A247024.

%H Charles R Greathouse IV, <a href="/A245014/b245014.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) << n^5*1024^n by Xylouris' version of Linnik's theorem. - _Charles R Greathouse IV_, Sep 18 2014

%t a[n_] := With[{k = n*2^(2*n+1)}, p = -4*n^2-1; While[!PrimeQ[p += k]]; p]; Table[a[n], {n, 1, 23}] (* _Jean-François Alcover_, Oct 09 2014, translated from _Charles R Greathouse IV_'s PARI code *)

%o (PARI) search(u)={ /* Slow, u must be a small integer. */

%o my(log2=log(2),q,t,t0,L1=List());

%o forprime(y=3,prime(10^u),

%o t=log(y+1)\log2;

%o while(t>t0,

%o q=4*t^2+y+1;

%o if(q%(t*(2^(2*t+1)))==0,

%o listput(L1,[t,y]);

%o t0=t;

%o break

%o ,

%o t--

%o )));

%o L1

%o }

%o (PARI) a(n)=my(k=n<<(2*n+1),p=-4*n^2-1); while(!isprime(p+=k),); p \\ _Charles R Greathouse IV_, Sep 18 2014

%Y Cf. A247024.

%K nonn

%O 1,1

%A _R. J. Cano_ Sep 17 2014

%E a(10)-a(23) from _Charles R Greathouse IV_, Sep 18 2014