login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277388
Number of nonnegative solutions of a certain system of linear Diophantine equations depending on an odd parameter.
2
3, 47, 306, 1270, 4005, 10493, 24052, 49836, 95415, 171435, 292358, 477282, 750841, 1144185, 1696040, 2453848, 3474987, 4828071, 6594330, 8869070, 11763213, 15404917, 19941276, 25540100, 32391775, 40711203, 50739822, 62747706, 77035745, 93937905, 113823568, 137099952, 164214611, 195658015
OFFSET
2,1
COMMENTS
The Diophantine system is 2*a_{i,i}+Sum_{j=1..4}*a_{i,j}=n, where i=1..4, j is NOT equal to i and n>=1 is odd.
It can be proved that the number of nonnegative solutions is d(n) = (1 + n)*(3 + n)*(72 + n*(5 + n)*(17 + n*(6 + n)))/576 and a(n) = n*(-1+n)*(3-2*n+n^2-n^3+2*n^4)/18 is obtained by remapping n->2*n-3.
FORMULA
a(n) = n*(-1+n)*(3-2*n+n^2-n^3+2*n^4)/18.
From Colin Barker, Oct 12 2016: (Start)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>8.
G.f.: x^2*(3+26*x+40*x^2+10*x^3+x^4) / (1-x)^7.
(End)
MATHEMATICA
(* The code is in the InputForm form to simply copy and paste it in Mathematica. The input parameter is n>=1 (odd) and for larger n's the code must be preceded by: *)
SetSystemOptions["ReduceOptions"->{"DiscreteSolutionBound"->1000}];
(* For a very large n the parameter value (1000) must be increased further but the enumeration is increasingly time-consuming. *)
Reduce[Subscript[a, 1, 2]+Subscript[a, 1, 3]+Subscript[a, 1, 4]==n-2*Subscript[a, 1, 1]&&Subscript[a, 1, 2]>=0&&Subscript[a, 1, 3]>=0&&Subscript[a, 1, 4]>=0&&Subscript[a, 1, 1]>=0&&Subscript[a, 1, 2]+Subscript[a, 2, 3]+Subscript[a, 2, 4]==n-2*Subscript[a, 2, 2]&&Subscript[a, 2, 3]>=0&&Subscript[a, 2, 4]>=0&&Subscript[a, 2, 2]>=0&&Subscript[a, 1, 3]+Subscript[a, 2, 3]+Subscript[a, 3, 4]==n-2*Subscript[a, 3, 3]&&Subscript[a, 3, 4]>=0&&Subscript[a, 3, 3]>=0&&Subscript[a, 1, 4]+Subscript[a, 2, 4]+Subscript[a, 3, 4]==n-2*Subscript[a, 4, 4]&&Subscript[a, 4, 4]>=0, {Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3], Subscript[a, 1, 4], Subscript[a, 2, 2], Subscript[a, 2, 3], Subscript[a, 2, 4], Subscript[a, 3, 3], Subscript[a, 3, 4], Subscript[a, 4, 4]}, Integers]//Length
Table[(n(n-1)(2n^4-n^3+n^2-2n+3))/18, {n, 2, 40}] (* or *) Drop[CoefficientList[ Series[ x^2(3+26x+40x^2+10x^3+x^4)/(1-x)^7, {x, 0, 40}], x], 2] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {3, 47, 306, 1270, 4005, 10493, 24052}, 40] (* Harvey P. Dale, Jun 21 2024 *)
PROG
(PARI) a(n) = (54+189*n+275*n^2+213*n^3+92*n^4+21*n^5+2*n^6)/18 \\ Colin Barker, Oct 12 2016
(PARI) Vec(x^2*(3+26*x+40*x^2+10*x^3+x^4)/(1-x)^7 + O(x^40)) \\ Colin Barker, Oct 16 2016
CROSSREFS
Cf. A277387.
Sequence in context: A052187 A260219 A131465 * A245014 A247024 A137611
KEYWORD
nonn,easy
AUTHOR
Kamil Bradler, Oct 12 2016
STATUS
approved