login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonnegative solutions of a certain system of linear Diophantine equations depending on an odd parameter.
2

%I #37 Jun 21 2024 14:45:42

%S 3,47,306,1270,4005,10493,24052,49836,95415,171435,292358,477282,

%T 750841,1144185,1696040,2453848,3474987,4828071,6594330,8869070,

%U 11763213,15404917,19941276,25540100,32391775,40711203,50739822,62747706,77035745,93937905,113823568,137099952,164214611,195658015

%N Number of nonnegative solutions of a certain system of linear Diophantine equations depending on an odd parameter.

%C The Diophantine system is 2*a_{i,i}+Sum_{j=1..4}*a_{i,j}=n, where i=1..4, j is NOT equal to i and n>=1 is odd.

%C It can be proved that the number of nonnegative solutions is d(n) = (1 + n)*(3 + n)*(72 + n*(5 + n)*(17 + n*(6 + n)))/576 and a(n) = n*(-1+n)*(3-2*n+n^2-n^3+2*n^4)/18 is obtained by remapping n->2*n-3.

%H Colin Barker, <a href="/A277388/b277388.txt">Table of n, a(n) for n = 2..1000</a>

%H Kamil Bradler, <a href="https://arxiv.org/abs/1610.06387">On the number of nonnegative solutions of a system of linear Diophantine equations</a>, arXiv:1610.06387 [math-ph], 2016.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = n*(-1+n)*(3-2*n+n^2-n^3+2*n^4)/18.

%F From _Colin Barker_, Oct 12 2016: (Start)

%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>8.

%F G.f.: x^2*(3+26*x+40*x^2+10*x^3+x^4) / (1-x)^7.

%F (End)

%t (* The code is in the InputForm form to simply copy and paste it in Mathematica. The input parameter is n>=1 (odd) and for larger n's the code must be preceded by: *)

%t SetSystemOptions["ReduceOptions"->{"DiscreteSolutionBound"->1000}];

%t (* For a very large n the parameter value (1000) must be increased further but the enumeration is increasingly time-consuming. *)

%t Reduce[Subscript[a,1,2]+Subscript[a,1,3]+Subscript[a,1,4]==n-2*Subscript[a,1,1]&&Subscript[a,1,2]>=0&&Subscript[a,1,3]>=0&&Subscript[a,1,4]>=0&&Subscript[a,1,1]>=0&&Subscript[a,1,2]+Subscript[a,2,3]+Subscript[a,2,4]==n-2*Subscript[a,2,2]&&Subscript[a,2,3]>=0&&Subscript[a,2,4]>=0&&Subscript[a,2,2]>=0&&Subscript[a,1,3]+Subscript[a,2,3]+Subscript[a,3,4]==n-2*Subscript[a,3,3]&&Subscript[a,3,4]>=0&&Subscript[a,3,3]>=0&&Subscript[a,1,4]+Subscript[a,2,4]+Subscript[a,3,4]==n-2*Subscript[a,4,4]&&Subscript[a,4,4]>=0,{Subscript[a,1,1],Subscript[a,1,2],Subscript[a,1,3],Subscript[a,1,4],Subscript[a,2,2],Subscript[a,2,3],Subscript[a,2,4],Subscript[a,3,3],Subscript[a,3,4],Subscript[a,4,4]},Integers]//Length

%t Table[(n(n-1)(2n^4-n^3+n^2-2n+3))/18,{n,2,40}] (* or *) Drop[CoefficientList[ Series[ x^2(3+26x+40x^2+10x^3+x^4)/(1-x)^7,{x,0,40}],x],2] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{3,47,306,1270,4005,10493,24052},40] (* _Harvey P. Dale_, Jun 21 2024 *)

%o (PARI) a(n) = (54+189*n+275*n^2+213*n^3+92*n^4+21*n^5+2*n^6)/18 \\ _Colin Barker_, Oct 12 2016

%o (PARI) Vec(x^2*(3+26*x+40*x^2+10*x^3+x^4)/(1-x)^7 + O(x^40)) \\ _Colin Barker_, Oct 16 2016

%Y Cf. A277387.

%K nonn,easy

%O 2,1

%A _Kamil Bradler_, Oct 12 2016