OFFSET
0,3
LINKS
S. Heubach, Tiling an m-by-n area with squares of size up to k-by-k (m<=5), Congressus Numerantium 140 (1999), 43-64.
R. J. Mathar, Tiling nxm rectangles with 1 X 1 and s X s squares arXiv:1609.03964 [math.CO], 2016.
Index entries for linear recurrences with constant coefficients, signature (2,7,-2,-3).
FORMULA
a(n) = b(1)a(n-1)+b(2)a(n-2)+...+b(n)a(0), where a(0)=a(1)=1 and b(1)=1, b(2)=7, b(n)=F(n+1)of A000045 (Fibonacci numbers) for n>2.
a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) - 3*a(n-4). - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006
G.f.: (1-x-x^2)/(1-2*x-7*x^2+2*x^3+3*x^4). [R. J. Mathar, Nov 02 2008]
EXAMPLE
a(2)=8 as there is one tiling of a 5 X 2 area with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles.
MATHEMATICA
f[{A_, B_}] := Module[{til = A, basic = B}, {Flatten[Append[til, ListConvolve[A, B]]], AppendTo[basic, 2 Fibonacci[Length[B] + 2]]}]; NumOfTilings[n_] := Nest[f, {{1, 1}, {1, 7}}, n - 2][[1]] NumOfTilings[30]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
STATUS
approved