login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054855
Number of ways to tile a 5 X n area with 1 X 1 and 2 X 2 tiles.
9
1, 1, 8, 21, 93, 314, 1213, 4375, 16334, 59925, 221799, 817280, 3018301, 11134189, 41096528, 151643937, 559640289, 2065192514, 7621289593, 28124714395, 103789150046, 383013144129, 1413437041011, 5216013647648, 19248692843977
OFFSET
0,3
LINKS
FORMULA
a(n) = b(1)a(n-1)+b(2)a(n-2)+...+b(n)a(0), where a(0)=a(1)=1 and b(1)=1, b(2)=7, b(n)=F(n+1)of A000045 (Fibonacci numbers) for n>2.
a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) - 3*a(n-4). - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006
G.f.: (1-x-x^2)/(1-2*x-7*x^2+2*x^3+3*x^4). [R. J. Mathar, Nov 02 2008]
EXAMPLE
a(2)=8 as there is one tiling of a 5 X 2 area with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles.
MATHEMATICA
f[{A_, B_}] := Module[{til = A, basic = B}, {Flatten[Append[til, ListConvolve[A, B]]], AppendTo[basic, 2 Fibonacci[Length[B] + 2]]}]; NumOfTilings[n_] := Nest[f, {{1, 1}, {1, 7}}, n - 2][[1]] NumOfTilings[30]
CROSSREFS
Column k=5 of A245013.
Sequence in context: A275185 A264238 A188700 * A220611 A297340 A220580
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
STATUS
approved