login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063653
Number of ways to tile a 9 X n rectangle with 1 X 1 and 2 X 2 tiles.
4
1, 1, 55, 341, 5933, 59925, 795611, 9167119, 113555791, 1355115601, 16484061769, 198549329897, 2403674442213, 29023432116879, 350917980468767, 4239961392742933, 51247532773412135, 619304595300705203, 7484739788762129061, 90454037365096154821
OFFSET
0,3
COMMENTS
a(8) is number of ways can kings be placed on an 8 X 8 chessboard so that no two kings can attack each other. - Vaclav Kotesovec, Apr 02 2010
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, 110, -262, -2786, 5916, 25168, -53907, -95299, 197820, 193866, -340168, -228528, 279636, 137864, -108909, -33736, 20214, 2460, -1296).
FORMULA
a(n) = 6*a(n-1) + 110*a(n-2) - 262*a(n-3) - 2786*a(n-4) + 5916*a(n-5) + 25168*a(n-6) - 53907*a(n-7) - 95299*a(n-8) + 197820*a(n-9) + 193866*a(n-10) - 340168*a(n-11) - 228528*a(n-12) + 279636*a(n-13) + 137864*a(n-14) - 108909*a(n-15) - 33736*a(n-16) + 20214*a(n-17) + 2460*a(n-18) - 1296*a(n-19).
CROSSREFS
KEYWORD
nonn
AUTHOR
Reiner Martin, Jul 23 2001
EXTENSIONS
Subscripts in formula repaired by Ron Hardin, Dec 29 2010
STATUS
approved