login
A075740
Squarefree Fibonacci numbers which are the product of an even number of distinct primes and whose index is also squarefree and the product of an even number of distinct primes.
2
1, 55, 377, 17711, 121393, 5702887, 139583862445, 1304969544928657, 5527939700884757, 259695496911122585, 679891637638612258, 12200160415121876738, 19740274219868223167, 31940434634990099905
OFFSET
1,2
LINKS
EXAMPLE
55 is in the sequence since 55 = fibonacci(10), 55 = 5*11, 10 = 2*5; 377 is in the sequence since 377 = fibonacci(14), 377 = 13*29, 14 = 2*7.
MAPLE
with(combinat, fibonacci): m1_supM_fib := proc(n); if (numtheory[mobius](n)=1) then if (numtheory[mobius](fibonacci(n))=1) then RETURN(fibonacci(n)); fi; fi; end: seq(m1_supM_fib(i), i=1..160);
MATHEMATICA
pendpQ[n_]:=Module[{f=Transpose[FactorInteger[n]]}, EvenQ[Length[ f[[1]]]] && Max[f[[2]]]==1]; Join[{1}, Transpose[Select[Table[{n, Fibonacci[n]}, {n, 150}], pendpQ[#[[1]]] && pendpQ[#[[2]]]&]][[2]]] (* Harvey P. Dale, Feb 05 2014 *)
PROG
(PARI) {for(n=1, 100, if(moebius(n)==1&&moebius(k=fibonacci(n))==1, print1(k, ", ")))}
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jani Melik, Oct 07 2002
EXTENSIONS
Edited by Klaus Brockhaus, May 25 2003
Added "squarefree" to definition. - N. J. A. Sloane, Jul 31 2020
STATUS
approved