login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355511 a(n) is the number of monic polynomials of degree n over GF(11) without linear factors. 0
0, 0, 55, 440, 5170, 56408, 620950, 6830120, 75131485, 826446280, 9090909091, 100000000000, 1100000000000, 12100000000000, 133100000000000, 1464100000000000, 16105100000000000, 177156100000000000, 1948717100000000000, 21435888100000000000, 235794769100000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
O.g.f. (1 - z)^(11)/(1-11*z) - 1
EXAMPLE
a(0) = 0 since there are no irreducible constant polynomials (as GF(11) is a field).
a(1) = 0 since all polynomials of degree 1 have linear factors.
a(2), the number of quadratic polynomials without linear factors, then coincides with the number of irreducible quadratics in GF(11), which is known to be M(11,2), where M(a,d) is the necklace polynomial, so a(2) = 55.
MATHEMATICA
necklacePolynomial[q_, n_] :=
necklacePolynomial[q, n] = (1/n)*
DivisorSum[n, MoebiusMu[n/#1]*q^#1 & ];
numIrreds[q_, n_] := If[n != 0, necklacePolynomial[q, n], 0];
restrictedPolynomialsOGF[q_, n_, d_] :=
Product[(1 - z^If[ArrayDepth[d[[l]]] == 0, d[[l]], d[[l]][[1]]])^
If[ArrayDepth[d[[l]]] == 0, numIrreds[q, d[[l]]],
d[[l]][[2]]], {l, 1, Length[d]}]/(1 - q*z);
numRestrictedPolys[q_, n_, d_] :=
SeriesCoefficient[restrictedPolynomialsOGF[q, n, d], {z, 0, n}];
q = 11;
TableForm[{#, numRestrictedPolys[q, #, {1}]} & /@ (Range[20]),
TableHeadings -> {{Row[{"(q=", q, ")"}]}, {"n", "#rootless monics"}}]
CROSSREFS
Cf. A355510.
Sequence in context: A222348 A075740 A340240 * A129217 A116060 A145054
KEYWORD
nonn
AUTHOR
Greyson C. Wesley, Jul 04 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 21:48 EDT 2024. Contains 375759 sequences. (Running on oeis4.)