login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219923
Number of ways to write n=x+y (x>0, y>0) with x-1, x+1 and 2*x*y+1 all prime
10
0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 3, 2, 0, 1, 2, 2, 3, 2, 1, 0, 2, 2, 0, 1, 3, 2, 2, 1, 3, 4, 2, 2, 3, 0, 4, 3, 3, 1, 1, 3, 0, 3, 2, 1, 1, 3, 3, 1, 1, 5, 3, 1, 2, 1, 3, 3, 5, 3, 1, 2, 4, 3, 3, 2, 4, 3, 2, 2, 0, 3, 5, 4, 1, 3, 6, 2, 6, 2, 2, 4, 5, 5, 2, 3, 3, 4, 1, 2, 0, 1, 4, 2, 4, 1, 6, 6
OFFSET
1,9
COMMENTS
Conjecture: a(n)>0 for all n>623.
This has been verified for n up to 10^8.
Zhi-Wei Sun made the following general conjecture: For each nonnegative integer m, any sufficiently large integer n can be written as x+y (x>0, y>0) with x-m, x+m and 2*x*y+1 all prime.
For example, when m = 2, 3, 4, 5 it suffices to require that n is greater than 28, 151, 357, 199 respectively.
Sun also conjectured that for each m=0,1,2,... any sufficiently large integer n with m or n odd can be written as x+y (x>0, y>0) with x-m, x+m and x*y-1 all prime.
For example, in the case m=1 it suffices to require that n is greater than 4 and not among 40, 125, 155, 180, 470, 1275, 2185, 3875; when m=2 it suffices to require that n is odd, greater than 7, and different from 13.
EXAMPLE
a(11)=1 since 11=6+5 with 6-1, 6+1 and 2*6*5+1=61 all prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[Prime[k]+2]==True&&PrimeQ[2(Prime[k]+1)(n-Prime[k]-1)+1]==True, 1, 0], {k, 1, PrimePi[n-1]}]
Do[Print[n, " ", a[n]], {n, 1, 10000}]
CROSSREFS
Sequence in context: A029425 A219055 A025902 * A286950 A210638 A272903
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 01 2012
STATUS
approved