login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002478 Bisection of A000930.
(Formerly M2572 N1017)
53
1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of ways to tile a 3 X n region with 1 X 1, 2 X 2 and 3 X 3 tiles.
Number of ternary words with subwords (0,0), (0,1) and (1,1) not allowed. - Olivier Gérard, Aug 28 2012
Diagonal sums of A063967. - Paul Barry, Nov 09 2005
Row sums of number triangle A116088. - Paul Barry, Feb 04 2006
Sequence is identical to its second differences negated, minus the first 3 terms. - Paul Curtz, Feb 10 2008
a(n) = term (3,3) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,2,1]^n. - Gary W. Adamson, May 30 2008
a(n)/a(n-1) tends to 2.147899035..., an eigenvalue of the matrix and a root to x^3 - x^2 - 2x - 1 = 0. - Gary W. Adamson, May 30 2008
INVERT transform of (1, 2, 1, 0, 0, 0, ...) = (1, 3, 6, 13, 28, ...); such that (1, 2, 1, 0, 0, 0, ...) convolved with (1, 1, 3, 6, 13, 28, 0, 0, 0, ...) shifts to the left. - Gary W. Adamson, Apr 18 2010
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Emeric Deutsch, Counting tilings with L-tiles and squares, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
Milan Janjic, Pascal Triangle and Restricted Words, arXiv:1705.02497 [math.CO], 2017.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 19 (halved...).
Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
FORMULA
G.f.: 1 / (1-x-2*x^2-x^3). [Simon Plouffe in his 1992 dissertation.]
a(n) = a(n-1) + 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} binomial(2*n-2*k, k). - Paul Barry, Nov 13 2004
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j, n-k-j)*C(j, k). - Paul Barry, Nov 09 2005
a(n) = Sum_{k=0..n} C(2*k,n-k) = Sum_{k=0..n} C(n,k)*C(3*k,n)/C(3*k,k). - Paul Barry, Feb 04 2006
a(n) = A000930(n) + 2*Sum_{i=0..n-2} a(i)*A000930(n-2-i). - Michael Tulskikh, Jun 07 2020
EXAMPLE
a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
MATHEMATICA
f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1, 1, 3}, n-2]; NumOfTilings[30]
LinearRecurrence[{1, 2, 1}, {1, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 2, 1]^n*[1; 1; 3])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
(Magma) I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
(SageMath)
@CachedFunction
def a(n): # A002478
if (n<3): return (1, 1, 3)[n]
else: return sum(binomial(2, j)*a(n-j) for j in range(1, 4))
[a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023
CROSSREFS
Cf. A000930, A054856, A054857, A025234, A078007, A078039, A226546, A077936 (INVERT transform), A008346 (inverse INVERT transform).
Sequence in context: A106461 A348124 A095768 * A106496 A052933 A071014
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 10:12 EST 2024. Contains 370228 sequences. (Running on oeis4.)