login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002477 Wonderful Demlo numbers: a(n) = ((10^n - 1)/9)^2.
(Formerly M5386 N2339)
34
1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 1234567900987654321, 123456790120987654321, 12345679012320987654321, 1234567901234320987654321 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Only nine first terms of this sequence are palindromes. - Bui Quang Tuan, Mar 30 2015

Not all of the terms are Demlo numbers as defined by Kaprekar, i.e., concat(L,M,R) with M and L+R repdigits using the same digit. For example, a(10), a(19), a(28) are not, but a(k) for k = 11, 12, ..., 18 are. - M. F. Hasler, Nov 18 2017

REFERENCES

D. R. Kaprekar, On Wonderful Demlo numbers, Math. Stud., 6 (1938), 68.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..300

K. R. Gunjikar and D. R. Kaprekar, Theory of Demlo numbers, J. Univ. Bombay, Vol. VIII, Part 3, Nov. 1939, pp. 3-9. [Annotated scanned copy]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Demlo Number

Eric Weisstein's World of Mathematics, Repunit

FORMULA

G.f.: x*(1+10*x) / ((1-x)*(1-10*x)*(1-100*x)).

a(n+1) = 100*a(n) + 20*A000042(n) + 1; a(1) = 1. - Reinhard Zumkeller, May 31 2010

a(n) = A000042(n)^2.

a(n) = A075412(n)/9 = A178630(n)/18 = A178631(n)/27 = A075415(n)/36 = A178632(n)/45 = A178633(n)/54 = A178634(n)/63 = A178635(n)/72 = A059988(n)/81. - Reinhard Zumkeller, May 31 2010

a(n+2) = -1000*a(n)+110*a(n+1)+11. - Alexander R. Povolotsky, Jun 06 2014

EXAMPLE

From José de Jesús Camacho Medina, Apr 01 2016: (Start)

n=1: ....................... 1 = 9 / 9;

n=2: ..................... 121 = 1089 / 9;

n=3: ................... 12321 = 110889 / 9;

n=4: ................. 1234321 = 11108889 / 9;

n=5: ............... 123454321 = 1111088889 / 9;

n=6: ............. 12345654321 = 111110888889 / 9;

n=7: ........... 1234567654321 = 11111108888889 / 9;

n=8: ......... 123456787654321 = 1111111088888889 / 9;

n=9: ....... 12345678987654321 = 111111110888888889 / 9.        (End)

a(11) = concat(L = 1234567901, R = 20987654321), with L + R = 22222222222 = 2*(10^11-1)/9, of same length as R. - M. F. Hasler, Nov 23 2017

MAPLE

A002477:=-(1+10*z)/(z-1)/(100*z-1)/(10*z-1); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

Table[FromDigits[PadRight[{}, n, 1]]^2, {n, 15}] (* Harvey P. Dale, Oct 16 2012 *)

PROG

(PARI) a(n) = (10^n\9)^2 \\ Charles R Greathouse IV, Jul 25 2011

(MAGMA) [((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Jul 26 2011

(Maxima) A002477(n):=((10^n - 1)/9)^2$

makelist(A002477(n), n, 1, 10); /* Martin Ettl, Nov 12 2012 */

CROSSREFS

Cf. A002275.

Sequence in context: A137466 A062689 A057139 * A173426 A261570 A068117

Adjacent sequences:  A002474 A002475 A002476 * A002478 A002479 A002480

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Minor edits from N. J. A. Sloane, Aug 18 2009

Further edits from Reinhard Zumkeller, May 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 02:43 EST 2018. Contains 299473 sequences. (Running on oeis4.)