login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178634
a(n) = 63 * ((10^n - 1)/9)^2.
14
63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
OFFSET
1,1
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
FORMULA
a(n) = 63*A002477(n) = A002283(n)*A002281(n).
a(n) = ((A002281(n-1)*10 + 6)*10^(n-1) + A002276(n-1))*10 + 3.
G.f.: 63*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 7*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024
EXAMPLE
n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
MATHEMATICA
63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{}, n, 7], {6}, PadRight[{}, n, 2], {3}]], {n, 0, 15}] (* Harvey P. Dale, Apr 23 2012 *)
PROG
(Magma) [63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
(PARI) a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
(Sage) [63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
(GAP) List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 31 2010
STATUS
approved