login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002276 a(n) = 2*(10^n - 1)/9. 38
0, 2, 22, 222, 2222, 22222, 222222, 2222222, 22222222, 222222222, 2222222222, 22222222222, 222222222222, 2222222222222, 22222222222222, 222222222222222, 2222222222222222, 22222222222222222, 222222222222222222, 2222222222222222222 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A178630(n)/A002283(n). - Reinhard Zumkeller, May 31 2010

a(n) is also the total number of holes in a variation of a box fractal as in illustration. - Kival Ngaokrajang, May 23 2014 [As observed by Hans Havermann, this seems to be incorrect: e.g., for n = 2 the illustration shows 28 small holes plus two larger holes. - M. F. Hasler, Oct 05 2020]

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..200

Kival Ngaokrajang, Illustration for n = 1..4

Index entries for linear recurrences with constant coefficients, signature (11,-10).

FORMULA

a(n) = 10*a(n-1) + 2, with a(0) = 0. - Paolo P. Lava, Jan 23 2009

a(n) = a(n-1) + 2*10^(n-1) with a(0) = 0; Also: a(n) = 11*a(n-1) - 10*a(n-2) with a(0) = 0, a(1) = 2. - Vincenzo Librandi, Jul 22 2010

G.f.: 2*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017

MATHEMATICA

LinearRecurrence[{11, -10}, {0, 2}, 50] (* Jinyuan Wang, Feb 27 2020 *)

PROG

(Maxima) A002276(n):=2*(10^n - 1)/9$

makelist(A002276(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */

(PARI) a(n)=10^n\9*2 \\ M. F. Hasler, Mar 27 2015

CROSSREFS

Cf. A002275, A002277, A002278, A002279, A002280, A002281, A002282, A178634.

Sequence in context: A037567 A174200 A137109 * A112893 A086855 A089182

Adjacent sequences:  A002273 A002274 A002275 * A002277 A002278 A002279

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 12:00 EST 2021. Contains 340416 sequences. (Running on oeis4.)