login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010785 Repdigit numbers, or numbers with repeated digits. 136
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999, 111111, 222222, 333333, 444444, 555555, 666666 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Complement of A139819. - David Wasserman, May 21 2008

Subsequence of A134336 and of A178403. - Reinhard Zumkeller, May 27 2010

Subsequence of A193460. - Reinhard Zumkeller, Jul 26 2011

Intersection of A009994 and A009996. - David F. Marrs, Sep 29 2018

Beiler (1964) called these numbers "monodigit numbers". The term "repdigit numbers" was used by Trigg (1974). - Amiram Eldar, Jan 21 2022

REFERENCES

Albert H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, p. 83.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Eric F. Bravo, Carlos A. Gómez and Florian Luca, Product of Consecutive Tribonacci Numbers With Only One Distinct Digit, J. Int. Seq., Vol. 22 (2019), Article 19.6.3.

Mahadi Ddamulira, Repdigits as sums of three balancing numbers, Mathematica Slovaca, (2019), hal-02405969.

Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020.

Mahadi Ddamulira, Tribonacci numbers that are concatenations of two repdigits, hal-02547159, Mathematics [math] / Number Theory [math.NT], 2020.

Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Mathematica Slovaca, Vol. 71, No. 2 (2021), pp. 275-284.

Bart Goddard and Jeremy Rouse, Sum of two repdigits a square, arXiv:1607.06681 [math.NT], 2016. Mentions this sequence.

Bir Kafle, Florian Luca and Alain Togbé, Triangular Repblocks, Fibonacci Quart., Vol. 56, No. 4 (2018), pp. 325-328.

Bir Kafle, Florian Luca and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae, Vol. 52 (2020), pp. 137-145.

Benedict Vasco Normenyo, Bir Kafle, and Alain Togbé, Repdigits as Sums of Two Fibonacci Numbers and Two Lucas Numbers, Integers, Vol. 19 (2019), Article A55.

Salah Eddine Rihane and Alain Togbé, Repdigits as products of consecutive Padovan or Perrin numbers, Arab. J. Math., Vol. 10 (2021), pp. 469-480.

Charles W. Trigg, Infinite sequences of palindromic triangular numbers, The Fibonacci Quarterly, Vol. 12, No. 2 (1974), pp. 209-212.

Eric Weisstein's World of Mathematics, Repdigit.

Wikipedia, Repdigit.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,-10).

FORMULA

A037904(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2007

A178401(a(n)) > 0. - Reinhard Zumkeller, May 27 2010

From Reinhard Zumkeller, Jul 26 2011: (Start)

For n > 0: A193459(a(n)) = A000005(a(n)).

for n > 10: a(n) mod 10 = floor(a(n)/10) mod 10.

A010879(n) = A010879(A059995(n)). (End)

A202022(a(n)) = 1. - Reinhard Zumkeller, Dec 09 2011

a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=6, a(7)=7, a(8)=8, a(9)=9, a(10)=11, a(11)=22, a(12)=33, a(13)=44, a(14)=55, a(15)=66, a(16)=77, a(17)=88, a(n) = 11*a(n-9) - 10*a(n-18). - Harvey P. Dale, Dec 28 2011

A151949(a(n)) = 0; A180410(a(n)) = A227362(a(n)). - Reinhard Zumkeller, Jul 09 2013

a(n) = (n - 9*floor((n-1)/9))*(10^floor((n+8)/9) - 1)/9. - José de Jesús Camacho Medina, Nov 06 2014

G.f.: x*(1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/((1-x^9)*(1-10*x^9)). - Robert Israel, Nov 09 2014

A047842(a(n)) = A244112(a(n)). - Reinhard Zumkeller, Nov 11 2014

Sum_{n>=1} 1/a(n) = (7129/2520) * A065444 = 3.11446261209177581335... - Amiram Eldar, Jan 21 2022

MAPLE

A010785 := proc(n)

(n-9*floor(((n-1)/9)))*((10^(floor(((n+8)/9)))-1)/9) ;

end proc:

seq(A010785(n), n = 0 .. 100); # Robert Israel, Nov 09 2014

MATHEMATICA

fQ[n_]:=Module[{id=IntegerDigits[n]}, Length[Union[id]]==1]; Select[Range[0, 10000], fQ] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)

Union[FromDigits/@Flatten[Table[PadRight[{}, i, n], {n, 0, 9}, {i, 6}], 1]] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, -10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88}, 40] (* Harvey P. Dale, Dec 28 2011 *)

Union@ Flatten@ Table[k (10^n - 1)/9, {k, 0, 9}, {n, 6}] (* Robert G. Wilson v, Oct 09 2014 *)

Table[(n - 9 Floor[(n-1)/9]) (10^Floor[(n+8)/9] - 1)/9, {n, 0, 50}] (* José de Jesús Camacho Medina, Nov 06 2014 *)

PROG

(PARI) a(n)=10^((n+8)\9)\9*((n-1)%9+1) \\ Charles R Greathouse IV, Jun 15 2011

(PARI) nxt(n, t=n%10)=if(t<9, n*(t+1), n*10+9)\t \\ Yields the term a(k+1) following a given term a(k)=n. M. F. Hasler, Jun 24 2016

(PARI) is(n)={1==#Set(digits(n))}

inv(n) = 9*#Str(n) + n%10 - 9 \\ David A. Corneth, Jun 24 2016

(Haskell)

a010785 n = a010785_list !! n

a010785_list = 0 : r [1..9] where

r (x:xs) = x : r (xs ++ [10*x + x `mod` 10])

-- Reinhard Zumkeller, Jul 26 2011

(Magma) [(n-9*Floor((n-1)/9))*(10^Floor((n+8)/9)-1)/9: n in [0..50]]; // Vincenzo Librandi, Nov 10 2014

(Python)

def a(n): return 0 if n == 0 else int(str((n-1)%9+1)*((n-1)//9+1))

print([a(n) for n in range(55)]) # Michael S. Branicky, Dec 29 2021

(Python)

print([0]+[int(d*r) for r in range(1, 7) for d in "123456789"]) # Michael S. Branicky, Dec 29 2021

CROSSREFS

Cf. A000005, A009994, A009996, A010879, A037904, A047842, A059995, A065444, A134336, A139819, A151949, A178401, A178403, A180410, A193459, A193460, A202022, A227362, A244112.

Sequence in context: A244514 A082810 A344550 * A343524 A032573 A190217

Adjacent sequences: A010782 A010783 A010784 * A010786 A010787 A010788

KEYWORD

nonn,base,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 14:42 EDT 2023. Contains 361662 sequences. (Running on oeis4.)