login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139819
Complement of repdigit numbers A010785.
7
10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89
OFFSET
1,1
COMMENTS
Identical to (base 10) non-palindromic numbers A029742 up to a(83) = 101 which is a term of this sequence but not in A029742. - M. F. Hasler, Sep 08 2015
LINKS
Eric Weisstein's World of Mathematics, Repdigit.
Wikipedia, Repdigit
Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024.
FORMULA
A202022(a(n)) = 0. - Reinhard Zumkeller, Dec 09 2011
MAPLE
isA139819 := proc(n)
convert(n, base, 10) ;
convert(%, set) ;
simplify(nops(%) >1 ) ;
end proc: # R. J. Mathar, Jan 17 2017
PROG
(Haskell) a139819 n = a139819_list !! (n-1)
a139819_list = filter ((== 0) . a202022) [0..] -- Reinhard Zumkeller, Dec 09 2011
(PARI) is_A139819(n)=#Set(digits(n))>1 \\ M. F. Hasler, Sep 08 2015
(Python)
def A139819(n):
m, k = n, n+9*((l:=len(str(n)))-1)+9*n//(10**l-1)
while m != k:
m, k = k, n+9*((l:=len(str(k)))-1)+9*k//(10**l-1)
return m # Chai Wah Wu, Sep 04 2024
CROSSREFS
Cf. A066484 (subsequence).
Cf. A029742 (non-palindromic in base 10), A016038 (in any base), A050813 (in bases 2..10).
Sequence in context: A109394 A285687 A139704 * A288040 A031955 A029742
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jun 02 2008
STATUS
approved