Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 17 2024 10:36:24
%S 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35,
%T 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,
%U 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89
%N Complement of repdigit numbers A010785.
%C Identical to (base 10) non-palindromic numbers A029742 up to a(83) = 101 which is a term of this sequence but not in A029742. - _M. F. Hasler_, Sep 08 2015
%H Reinhard Zumkeller, <a href="/A139819/b139819.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repdigit.html">Repdigit</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Repdigit">Repdigit</a>
%H Chai Wah Wu, <a href="https://arxiv.org/abs/2409.05844">Algorithms for complementary sequences</a>, arXiv:2409.05844 [math.NT], 2024.
%F A202022(a(n)) = 0. - _Reinhard Zumkeller_, Dec 09 2011
%p isA139819 := proc(n)
%p convert(n,base,10) ;
%p convert(%,set) ;
%p simplify(nops(%) >1 ) ;
%p end proc: # _R. J. Mathar_, Jan 17 2017
%o (Haskell) a139819 n = a139819_list !! (n-1)
%o a139819_list = filter ((== 0) . a202022) [0..] -- _Reinhard Zumkeller_, Dec 09 2011
%o (PARI) is_A139819(n)=#Set(digits(n))>1 \\ _M. F. Hasler_, Sep 08 2015
%o (Python)
%o def A139819(n):
%o m, k = n, n+9*((l:=len(str(n)))-1)+9*n//(10**l-1)
%o while m != k:
%o m, k = k, n+9*((l:=len(str(k)))-1)+9*k//(10**l-1)
%o return m # _Chai Wah Wu_, Sep 04 2024
%Y Cf. A066484 (subsequence).
%Y Cf. A029742 (non-palindromic in base 10), A016038 (in any base), A050813 (in bases 2..10).
%K nonn,base
%O 1,1
%A _N. J. A. Sloane_, Jun 02 2008