login
A139820
Expansion of (phi(-q) / phi(q))^2 in powers of q where phi() is a Ramanujan theta function.
5
1, -8, 32, -96, 256, -624, 1408, -3008, 6144, -12072, 22976, -42528, 76800, -135728, 235264, -400704, 671744, -1109904, 1809568, -2914272, 4640256, -7310592, 11404416, -17626944, 27009024, -41047992, 61905088, -92681664, 137803776, -203554224
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)^2 * eta(q^4) / eta(q^2)^3)^4 in powers of q.
Expansion of (phi(-q) / phi(q))^2 = (phi(-q^2) / phi(q))^4 = (phi(-q) / phi(-q^2))^4 = (psi(-q) / psi(q))^4 = (chi(-q^2) / chi(q)^2)^4 = (chi(-q) / chi(q))^4 = (chi(-q)^2 / chi(-q^2))^4 = (f(-q) / f(q))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of Jacobian elliptic function k'(q) in powers of nome q.
Euler transform of period 4 sequence [ -8, 4, -8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4 * u - v^2 * (1 + u)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A001938.
G.f.: ((Sum_{k} (-x)^k^2) / (Sum_{k} x^k^2))^2 = (Product_{k>0} (1 + x^(2*k)) / (1 + x^k)^2)^4.
a(n) = (-1)^n * A014969(n). Convolution inverse of A014969.
Empirical : sum(exp(-Pi)^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = sqrt(2). Simon Plouffe, Feb. 20, 2011.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n)) / (8 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
G.f.: exp(-8*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019
EXAMPLE
G.f. = 1 - 8*q + 32*q^2 - 96*q^3 + 256*q^4 - 624*q^5 + 1408*q^6 - 3008*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sqrt[1 - InverseEllipticNomeQ [ q]], {q, 0, n}];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] / EllipticTheta[ 3, 0, q])^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A) / eta(x^2 + A)^3)^4, n))};
CROSSREFS
Sequence in context: A019256 A286399 A014969 * A241204 A195590 A373867
KEYWORD
sign
AUTHOR
Michael Somos, May 01 2008
STATUS
approved