OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
FORMULA
c = Sum_{n>=0} log(1 + 1/2^n)^n/n! .
EXAMPLE
c = 1.43063452436116865706618033755902955470687309850539879176075545...
c = 1 + 1/2 - 3/32 + 35/1024 - 7285/524288 + 1570863/268435456 -+...
c = 1 + log(3/2) + log(5/4)^2/2! + log(9/8)^3/3! + log(17/16)^4/4! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
MATHEMATICA
RealDigits[Total[Table[Binomial[1/2^n, n], {n, 0, 1000}]], 10, 120][[1]] (* _Harvey P. Dale_, Nov 13 2014 *)
PROG
(PARI) a(n)=local(c=sum(m=0, n, log(1+1/2^m)^m/m!)); floor(c*10^n)%10
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
_Paul D. Hanna_, May 01 2008
STATUS
approved