login
A251610
Determinants of the spiral knots S(4,k,(1,1,1)).
1
1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, 17, 36, 19, 0, 21, 44, 23, 0, 25, 52, 27, 0, 29, 60, 31, 0, 33, 68, 35, 0, 37, 76, 39, 0, 41, 84, 43, 0, 45, 92, 47, 0, 49, 100, 51, 0, 53, 108, 55, 0, 57, 116, 59, 0, 61, 124, 63, 0, 65, 132, 67, 0, 69, 140, 71, 0, 73, 148, 75, 0, 77, 156, 79
OFFSET
1,2
COMMENTS
a(k) = det(S(4,k,(1,1,1))). These knots are also the torus knots T(4,k).
LINKS
A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126.
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
FORMULA
a(k) = det(S(4,k,(1,1,1))) = k*(b(k))^2, where b(1)=1, b(2)=sqrt(2), b(k)=sqrt(2)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2).
From Colin Barker, Dec 06 2014: (Start)
b(k) = ((2-(-i)^k-i^k)*k)/2 where i=sqrt(-1).
b(k) = 2*b(k-1)-3*b(k-2)+4*b(k-3)-3*b(k-4)+2*b(k-5)-b(k-6).
G.f.: x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2).
(End)
EXAMPLE
For k=3, b(3)=sqrt(2)b(2)-b(1)=2-1=1, so det(S(4,3,(1,1,1)))=3*1^2=3.
PROG
(PARI)
B=vector(166); B[1]=1; B[2]=s; \\ s := sqrt(2)
for(n=3, #B, B[n]=s*B[n-1]-B[n-2]);
B=substpol(B, s^2, 2);
A=vector(#B, n, n*B[n]^2);
A=substpol(A, s^2, 2)
\\ Joerg Arndt, Dec 06 2014
(PARI)
Vec(x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Dec 07 2014
CROSSREFS
Product of terms of A000027 and A007877.
Sequence in context: A304030 A338802 A242721 * A021703 A321209 A139823
KEYWORD
nonn,easy
AUTHOR
Ryan Stees, Dec 05 2014
EXTENSIONS
More terms from Joerg Arndt, Dec 06 2014
STATUS
approved