OFFSET
1,2
COMMENTS
a(k) = det(S(4,k,(1,1,1))). These knots are also the torus knots T(4,k).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126.
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
FORMULA
a(k) = det(S(4,k,(1,1,1))) = k*(b(k))^2, where b(1)=1, b(2)=sqrt(2), b(k)=sqrt(2)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2).
From Colin Barker, Dec 06 2014: (Start)
b(k) = ((2-(-i)^k-i^k)*k)/2 where i=sqrt(-1).
b(k) = 2*b(k-1)-3*b(k-2)+4*b(k-3)-3*b(k-4)+2*b(k-5)-b(k-6).
G.f.: x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2).
(End)
EXAMPLE
For k=3, b(3)=sqrt(2)b(2)-b(1)=2-1=1, so det(S(4,3,(1,1,1)))=3*1^2=3.
PROG
(PARI)
B=vector(166); B[1]=1; B[2]=s; \\ s := sqrt(2)
for(n=3, #B, B[n]=s*B[n-1]-B[n-2]);
B=substpol(B, s^2, 2);
A=vector(#B, n, n*B[n]^2);
A=substpol(A, s^2, 2)
\\ Joerg Arndt, Dec 06 2014
(PARI)
Vec(x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Dec 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ryan Stees, Dec 05 2014
EXTENSIONS
More terms from Joerg Arndt, Dec 06 2014
STATUS
approved