OFFSET
1,2
FORMULA
c = Sum_{n>=0} log(1 + 2/2^n)^n/n! .
EXAMPLE
c = 1.77720801611969162623112519724403533123800641251126312332290666...
c = 1 + (1/2)*2 - (3/32)*2^2 + (35/1024)*2^3 - (7285/524288)*2^4 +...
c = 1 + log(2) + log(3/2)^2/2! + log(5/4)^3/3! + log(9/8)^4/4! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
PROG
(PARI) a(n)=local(c=sum(m=0, n+2, log(1+2/2^m)^m/m!)); floor(c*10^n)%10
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, May 01 2008
STATUS
approved