OFFSET
1,1
FORMULA
c = Sum_{n>=0} log(1 + 1/2^n)^n*3^n/n! .
EXAMPLE
c = 2.44786260575157703503227005649125153516326296494143146338838167...
c = 1 + 3/2 - 3/32 + 65/1024 - 16965/524288 + 4112925/268435456 +...
c = 1 + log(3/2)*3 + log(5/4)^2*3^2/2! + log(9/8)^3*3^3/3! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
PROG
(PARI) a(n)=local(c=sum(m=0, n+2, log(1+1/2^m)^m*3^m/m!)); floor(c*10^n)%10
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, May 01 2008
STATUS
approved