The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000122 Expansion of Jacobi theta function theta_3(x) = Sum_{m =-oo..oo} x^(m^2) (number of integer solutions to k^2 = n). 1495
 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (the present sequence), psi(q) (A010054), chi(q) (A000700). Theta series of the one-dimensional lattice Z. Also, essentially the same as the theta series of the one-dimensional lattices A_1, A*_1, D_1, D*_1. Number of ways of writing n as a square. Closely related: theta_4(x) = Sum_{m = -oo..oo} (-x)^(m^2). See A002448. Number 6 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016 REFERENCES Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, Exercise 1, p. 91. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 64. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5n]. J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102. N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 93, Eq. (34.1); p. 78, Eq. (32.22). G. H. Hardy and E. M. Wright, Theorem 352, p. 282. J. Tannery and J. Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464. LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. M. D. Hirschhorn and J. A. Sellers, A Congruence Modulo 3 for Partitions into Distinct Non-Multiples of Four, Article 14.9.6, Journal of Integer Sequences, Vol. 17 (2014). K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions Eric Weisstein's World of Mathematics, Jacobi Theta Functions FORMULA Expansion of eta(q^2)^5 / (eta(q)*eta(q^4))^2 in powers of q. Euler transform of period 4 sequence [2, -3, 2, -1, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - v^2 + 2 * w * (w - u). - Michael Somos, Jul 20 2004 G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = w^4 - v^4 + w * (u - w)^3. - Michael Somos, May 11 2019 G.f.: Sum_{m=-oo..oo} x^(m^2); a(0) = 1; for n > 0, a(n) = 0 unless n is a square when a(n) = 2. G.f.: Product_{k>0} (1 - x^(2*k))*(1 + x^(2*k-1))^2. G.f.: s(2)^5/(s(1)^2*s(4)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine] The Jacobi triple product identity states that for |x| < 1, z != 0, Product_{n>0} {(1-x^(2n))(1+x^(2n-1)z)(1+x^(2n-1)/z)} = Sum_{n=-inf..inf} x^(n^2)*z^n. Set z=1 to get theta_3(x). For n > 0, a(n) = 2*(floor(sqrt(n))-floor(sqrt(n-1))). - Mikael Aaltonen, Jan 17 2015 G.f. is a period 1 Fourier series which satisfies f(-1/(4 t)) = 2^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t). - Michael Somos, May 05 2016 a(n) = A000132(n)(mod 4). - John M. Campbell, Jul 07 2016 a(n) = (2/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017 a(n) = 2 * A010052(n) if n>0. a(3*n + 1) = 2 * A089801(n). a(3*n + 2) = 0. a(4*n) = a(n). a(4*n + 2) = a(4*n + 3) = 0. a(8*n + 1) = 2 * A010054(n). - Michael Somos, May 11 2019 Dirichlet g.f.: 2*zeta(2s) - 1. - Francois Oger, Oct 26 2019 G.f. appears to equal exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 + x^(2*n+1))) ). - Peter Bala, Dec 23 2021 From Peter Bala, Sep 27 2023: (Start) G.f. A(x) satisfies A(x)*A(-x) = A(-x^2)^2. A(x) = Sum_{n >= 1} x^(n-1)*Product_{k >= n} 1 - (-x)^k. A(x)^2 = 1 + 4*Sum_{n >= 1} (-1)^(n+1)*x^(2*n-1)/(1 - x^(2*n-1)), which gives the number of representations of an integer as a sum of two squares. See, for example, Fine, 26.63. A(x) = 1 + 2*Sum_{n >= 1} x^(n*(n+1)/2) * ( Product_{k = 1..n-1} 1 + x^k ) /( Product_{k = 1..n} 1 + x^(2*k) ). See Fine, equation 14.43. (End) EXAMPLE G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + 2*q^25 + 2*q^36 + 2*q^49 + 2*q^64 + 2*q^81 + ... MAPLE add(x^(m^2), m=-10..10): seq(coeff(%, x, n), n=0..100); # alternative A000122 := proc(n) if n = 0 then 1; elif issqr(n) then 2; else 0 ; end if; end proc: seq(A000122(n), n=0..100) ; # R. J. Mathar, Feb 22 2021 MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *) CoefficientList[ Sum[ x^(m^2), {m, -(n=10), n} ], x ] SquaresR[1, Range[0, 104]] (* Robert G. Wilson v, Jul 16 2014 *) QP = QPochhammer; s = QP[q^2]^5/(QP[q]*QP[q^4])^2 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *) (4 QPochhammer[q^2]/QPochhammer[-1, -q]^2 + O[q]^101)[] (* Vladimir Reshetnikov, Sep 16 2016 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A))^2, n))}; /* Michael Somos, Mar 14 2011 */ (PARI) {a(n) = issquare(n) * 2 -(n==0)}; /* Michael Somos, Jun 17 1999 */ (Magma) Basis( ModularForms( Gamma0(4), 1/2), 100) ; /* Michael Somos, Jun 10 2014 */ (Magma) L := Lattice("A", 1); A := ThetaSeries(L, 20); A; /* Michael Somos, Nov 13 2014 */ (Sage) Q = DiagonalQuadraticForm(ZZ, ) Q.representation_number_list(105) # Peter Luschny, Jun 20 2014 (Julia) using Nemo function JacobiTheta3(len, r) R, x = PolynomialRing(ZZ, "x") e = theta_qexp(r, len, x) [fmpz(coeff(e, j)) for j in 0:len - 1] end A000122List(len) = JacobiTheta3(len, 1) A000122List(105) |> println # Peter Luschny, Mar 12 2018 (Python) from sympy.ntheory.primetest import is_square def A000122(n): return is_square(n)<<1 if n else 1 # Chai Wah Wu, May 17 2023 CROSSREFS 1st column of A286815. - Seiichi Manyama, May 27 2017 Row d=1 of A122141. Cf. A002448 (theta_4). Partial sums give A001650. Cf. A010052, A010054, A089801. Cf. A000007, A004015, A004016, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_3, A_2, A_4, ...). Sequence in context: A093492 A139380 A128771 * A002448 A033759 A033755 Adjacent sequences: A000119 A000120 A000121 * A000123 A000124 A000125 KEYWORD nonn,easy,nice,changed AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 17:28 EDT 2023. Contains 365837 sequences. (Running on oeis4.)