login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002448 Expansion of Jacobi theta function theta_4(x). 16
1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number 2 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 93, Eq. (34.11), p. 6, Eq. (7.324).

J. Tannery and J. Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27.

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 103.

J. W. L. Glaisher, On the deduction of series from infinite products, Messenger of Math., 2 (1873), p. 141.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Jacobi Theta Functions

Eric Weisstein's World of Mathematics, q-Series Identities

D. Zagier, Elliptic modular forms and their applications in "The 1-2-3 of modular forms", Springer-Verlag, 2008

FORMULA

Expansion of phi(-q) in powers of q where phi() is a Ramanujan theta function.

Expansion of eta(q)^2 / eta(q^2) in powers of q. - Michael Somos, May 01 2003

Expansion of 2 * sqrt( k' * K / (2 pi) ) in powers of q. - Michael Somos, Nov 30 2013

Euler transform of period 2 sequence [ -2, -1, ...]. - Michael Somos, May 01 2003

G.f.: Sum_{k in Z} (-1)^k * x^(k^2) = Product_{k>0} (1 - x^k) / (1 + x^k). - Michael Somos, May 01 2003.

G.f.: 1 - 2 Sum_{k>0} x^k/(1 - x^k) Product_{j=1..k} (1 - x^j) / (1 + x^j). - Michael Somos, Apr 12 2012

a(n) = -2 * b(n) where b(n) is multiplicative and b(2^e) = (-1)^(e/2) if e even, b(p^e) = 1 if p>2 and e even, otherwise 0. - Michael Somos, Jul 07 2006

a(3*n + 1) = -2 * A089802(n), a(9*n) = a(n). - Michael Somos, Jul 07 2006

a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A000122(n). a(n) = (-1)^n * A000122(n). a(8*n + 1) = -2 * A010054(n). - Michael Somos, Apr 12 2012

For n > 0, a(n) = 2*(floor(sqrt(n))-floor(sqrt(n-1)))*(-1)^(floor(sqrt(n)). - Mikael Aaltonen, Jan 17 2015

G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A010054. - Michael Somos, May 05 2016

EXAMPLE

G.f. = 1 - 2*q + 2*q^4 - 2*q^9 + 2*q^16 - 2*q^25 + 2*q^36 - 2*q^49 + ...

MAPLE

Sum((-x)^(m^2), m=-10..10);

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)

QP = QPochhammer; s = QP[q]^2/QP[q^2] + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)

PROG

(PARI) {a(n) = if( n<0, 0, (-1)^n * issquare(n) * 2 - (n==0))}; /* Michael Somos, Jun 17 1999 */

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 / eta(x^2 + A), n))}; /* Michael Somos, May 01 2003 */

CROSSREFS

Cf. A000122, A010054, A089802.

Sequence in context: A139380 A128771 A000122 * A033759 A033755 A033753

Adjacent sequences:  A002445 A002446 A002447 * A002449 A002450 A002451

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 19:05 EST 2016. Contains 278895 sequences.