OFFSET
1,2
COMMENTS
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Equation (5.1.29.8).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
Simon Plouffe, Identities inspired by the Ramanujan Notebooks, Second series, arXiv:1101.6066 [math.NT], 2011.
R. Sivaraman, José Luis López-Bonilla, and Sergio Vidal-Beltrán, On the Polynomial Structure of r_k(n), Indian J. Adv. Math. (2023) Vol. 3, Iss. 2, A1162044124.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Multiplicative with a(2^e) = -(2^e) if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2.
Expansion of (E - (1 - k^2) * K) * K / (2 Pi^2) in powers of the nome q where K, E are complete elliptic integrals.
Expansion of (1/2) x (d phi(x) / dx) / phi(x) in powers of x where phi() is a Ramanujan theta function.
G.f.: Sum_{k>0} - (-1)^k * k * x^k / (1 - x^(2*k)) = Sum_{k>0} x^(2*k-1) / (1 + x^(2*k-1))^2 = (Sum_{k>0} n^2 x^(n^2)) / (Sum_k x^(n^2)).
Dirichlet g.f. zeta(s) *zeta(s-1) *(1-7*2^(-s)+14*4^(-s)-8^(1-s)) / (1-2^(1-s)). - R. J. Mathar, Jun 01 2011
a(n) = -(-1)^n * A002131(n).
MOBIUS transform is A186111. - Michael Somos, Apr 25 2015
EXAMPLE
G.f. = q - 2*q^2 + 4*q^3 - 4*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 8*q^8 + 13*q^9 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1/8) (EllipticE[m] - (1 - m) EllipticK[m]) EllipticK[m]/(Pi/2)^2, {q, 0, n}]];
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, d / gcd(d, 2)))};
(Python)
from math import prod
from sympy import factorint
def A186690(n): return (1 if n&1 else -1)*prod((p**(e+1)-1)//(p-1) if p&1 else 1<<e for p, e in factorint(n).items()) # Chai Wah Wu, Jun 23 2024
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Feb 25 2011
STATUS
approved