login
A159634
Coefficient for dimensions of spaces of modular & cusp forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.
5
1, 2, 4, 4, 6, 8, 8, 8, 12, 12, 12, 16, 14, 16, 24, 16, 18, 24, 20, 24, 32, 24, 24, 32, 30, 28, 36, 32, 30, 48, 32, 32, 48, 36, 48, 48, 38, 40, 56, 48, 42, 64, 44, 48, 72, 48, 48, 64, 56, 60, 72, 56, 54, 72, 72, 64, 80, 60, 60, 96, 62, 64, 96, 64, 84, 96, 68, 72, 96, 96
OFFSET
1,2
COMMENTS
Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have
m(7/2,N)+s(5/2,N) = m(5/2,N)+s(7/2,N) =
(m(11/2,N)+s(9/2,N))/2 = (m(9/2,N)+s(11/2,N))/2 =
(m(15/2,N)+s(13/2,N))/3 = (m(13/2,N)+s(15/2,N))/3 = ...
(m((4j+3)/2,N)+s((4j+1)/2,N))/j = (m((4j+1)/2,N)+s((4j+3)/2,N))/j = ...
where N is any positive multiple of 4 and j>=1.
Multiplicative because A001615 is multiplicative and a(1) = A001615(2)/3 = 1. - Andrew Howroyd, Aug 08 2018
REFERENCES
Ken Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004, (p. 16, theorem 1.56).
LINKS
H. Cohen and J. Oesterle, Dimensions des espaces de formes modulaires, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78; Scanned copy.
S. R. Finch, Primitive Cusp Forms, April 27, 2009. [Cached copy, with permission of the author]
Jon Maiga, Computer-generated formulas for A159634, Sequence Machine.
Wikipedia, Cusp Form.
FORMULA
a(n) = A159636(n) + A159630(n). - Enrique Pérez Herrero, Apr 15 2014
a(n) = A001615(2*n)/3. - Enrique Pérez Herrero, Jan 31 2014
From Peter Bala, Mar 19 2019: (Start)
a(n)= n*Product_{p|n, p odd prime} (1 + 1/p).
a(n) = Sum_{d|n, d odd} mu(d)^2*n/d, where mu(n) = A008683(n) is the Möbius function.
If n = m*2^k , where 2^k is the largest power of 2 dividing n, then
a(n) = (2^k)*a(m) = 2^k * Sum_{d^2|m} mu(d)*sigma(m/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = 2^k * Sum_{d|m} 2^omega(d)*phi(m/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^(2^n-1)/(1 - x^(2*n-1))^2. (End)
a(n) = A000082(n)/A080512(n). [obvious by prime products, discovered by Sequence Machine]. - R. J. Mathar, Jun 24 2021
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(2^e) = 2^e, and a(p^e) = (p+1)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 6/Pi^2 = 0.607927... (A059956). (End)
MATHEMATICA
(* per Enrique Pérez Herrero's conjecture proved by P. Humphries, see link *)
dedekindPsi[n_Integer]:=n Apply[Times, 1+1/Map[First, FactorInteger[n]]];
1/3 dedekindPsi /@ (2 Range[70]) (* Wouter Meeussen, Apr 06 2014 *)
PROG
(Magma) [[4*n, (Dimension(HalfIntegralWeightForms(4*n, 7/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n, 5/2))))/2] : n in [1..70]]; [[4*n, (Dimension(HalfIntegralWeightForms(4*n, 5/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n, 7/2))))/2] : n in [1..70]];
(PARI) a(n) = 2*n*sumdiv( 2*n, d, moebius(d)^2 / d)/3; \\ Andrew Howroyd, Aug 08 2018
CROSSREFS
KEYWORD
nonn,look,mult
AUTHOR
Steven Finch, Apr 17 2009
STATUS
approved