OFFSET
1,2
COMMENTS
FORMULA
a(n) = A109814(n) + n - 1.
EXAMPLE
Figures A..D show the evolution of the table of partitions into consecutive parts described in A286000, for n = 8..11:
. ---------------------------------------------------------------------
Figure: A B C D
. ---------------------------------------------------------------------
. n: 8 9 10 11
Row ---------------------------------------------------------------------
1 | 1; | 1; | 1; | 1; |
1 | 2; | 2; | 2; | 2; |
3 | 3, 2; | 3, 2; | 3, 2; | 3, 2; |
4 | 4, 1; | 4, 1; | 4, 1; | 4, 1; |
5 | 5, 3; | 5, 3; | 5, 3; | 5, 3; |
6 | 6, 2, 3;| 6, 2, 3; | 6, 2, 3; | 6, 2, 3; |
7 | 7, 4, 2;| 7, 4, 2; | 7, 4, 2; | 7, 4, 2; |
8 | [8], 3, 1;| 8, 3, 1; | 8, 3, 1; | 8, 3, 1; |
9 | | [9],[5],[4]; | 9, 5, 4; | 9, 5, 4; |
10 | | 10, [4],[3], 4;| [10], 4, 3, [4];| 10, 4, 3; 4;|
11 | | 11, 6, [2], 3;| 11, 6, 2; [3];| [11],[6], 2, 3;|
12 | | | 12, 5, 5, [2];| 12, [5], 5, 2;|
13 | | | 13, 7, 4, [1];| |
. ---------------------------------------------------------------------
. a(n): 8 11 13 12
. ---------------------------------------------------------------------
For n = 8 we need a table with at least 8 rows, so a(8) = 8.
For n = 9 we need a table with at least 11 rows, so a(9) = 11.
For n = 10 we need a table with at least 13 rows, so a(10) = 13.
For n = 11 we need a table with at least 12 rows, so a(11) = 12.
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 19 2017
STATUS
approved