OFFSET
1,2
COMMENTS
This is a triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists successive blocks of k consecutive terms in decreasing order, where the m-th block starts with k + m - 1, m>=1, and the first element of column k is in the row k*(k+1)/2.
The partitions of n into consecutive parts are represented from the row n up to row A288529(n) as maximum, exclusively in the columns where the blocks begin.
More precisely, the partition of n into exactly k consecutive parts (if such partition exists) is represented in the column k from the row n up to row n + k - 1 (see examples).
A288772(n) is the minimum number of rows that are required to represent in this table the partitions of all positive integers <= n into consecutive parts.
A288773(n) is the largest of all positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
A288774(n) is the largest positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
Theorem: the smallest part of the partition of n into exactly k consecutive parts (if such partition exists) equals the number of positive integers <= n having a partition into exactly k consecutive parts.
EXAMPLE
Table de partitions into consecutive parts (first 28 rows):
1;
2;
3, 2;
4, 1;
5, 3;
6, 2, 3;
7, 4, 2;
8, 3, 1;
9, 5, 4;
10, 4, 3, 4;
11, 6, 2, 3;
12, 5, 5, 2;
13, 7, 4, 1;
14, 6, 3, 5;
15, 8, 6, 4, 5;
16, 7, 5, 3, 4;
17, 9, 4, 2, 3;
18, 8, 7, 6, 2;
19, 10, 6, 5, 1;
20, 9, 5, 4, 6;
21, 11, 8, 3, 5, 6;
22, 10, 7, 7, 4, 5;
23, 12, 6, 6, 3, 4;
24, 11, 9, 5, 2, 3;
25, 13, 8, 4, 7, 2;
26, 12, 7, 8, 6, 1;
27, 14, 10, 7, 5, 7;
28, 13, 9, 6, 4, 6, 7;
...
Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts:
. ------------------------------------------------------------------------
Fig: A B C D E F G
. ------------------------------------------------------------------------
. n: 1 2 3 4 5 6 7
Row ------------------------------------------------------------------------
1 | [1];| 1; | 1; | 1; | 1; | 1; | 1; |
2 | | [2];| 2; | 2; | 2; | 2; | 2; |
3 | | | [3],[2];| 3; 2;| 3, 2; | 3, 2; | 3, 2; |
4 | | | 4 ,[1];| [4], 1;| 4, 1; | 4, 1; | 4, 1; |
5 | | | | | [5],[3]; | 5, 3; | 5, 3; |
6 | | | | | 6, [2], 3;| [6], 2, [3];| 6, 2, 3;|
7 | | | | | | 7, 4, [2];| [7],[4], 2;|
8 | | | | | | 8, 3, [1];| 8, [3], 1;|
. ------------------------------------------------------------------------
Figure F: for n = 6 the partitions of 6 into consecutive parts are [6] and [3, 2, 1]. These partitions have 1 and 3 consecutive parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6.
.
Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts:
. --------------------------------------------------------------------
Fig: H I J K
. --------------------------------------------------------------------
. n: 8 9 10 11
Row --------------------------------------------------------------------
1 | 1; | 1; | 1; | 1; |
1 | 2; | 2; | 2; | 2; |
3 | 3, 2; | 3, 2; | 3, 2; | 3, 2; |
4 | 4, 1; | 4, 1; | 4, 1; | 4, 1; |
5 | 5, 3; | 5, 3; | 5, 3; | 5, 3; |
6 | 6, 2, 3;| 6, 2, 3; | 6, 2, 3; | 6, 2, 3; |
7 | 7, 4, 2;| 7, 4, 2; | 7, 4, 2; | 7, 4, 2; |
8 | [8], 3, 1;| 8, 3, 1; | 8, 3, 1; | 8, 3, 1; |
9 | | [9],[5],[4]; | 9, 5, 4; | 9, 5, 4; |
10 | | 10, [4],[3], 4;| [10], 4, 3, [4];| 10, 4, 3; 4;|
11 | | 11, 6, [2], 3;| 11, 6, 2; [3];| [11],[6], 2, 3;|
12 | | | 12, 5, 5, [2];| 12, [5], 5, 2;|
13 | | | 13, 7, 4, [1];| 13, 7, 4, 1;|
. --------------------------------------------------------------------
Figure J: For n = 10 the partitions of 10 into consecutive parts are [10] and [4, 3, 2, 1]. These partitions have 1 and 4 consecutive parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10.
Illustration of initial terms arranged into the diagram of the triangle A237591:
. _
. _|1|
. _|2 _|
. _|3 |2|
. _|4 _|1|
. _|5 |3 _|
. _|6 _|2|3|
. _|7 |4 |2|
. _|8 _|3 _|1|
. _|9 |5 |4 _|
. _|10 _|4 |3|4|
. _|11 |6 _|2|3|
. _|12 _|5 |5 |2|
. _|13 |7 |4 _|1|
. _|14 _|6 _|3|5 _|
. _|15 |8 |6 |4|5|
. _|16 _|7 |5 |3|4|
. _|17 |9 _|4 _|2|3|
. _|18 _|8 |7 |6 |2|
. _|19 |10 |6 |5 _|1|
. _|20 _|9 _|5 |4|6 _|
. _|21 |11 |8 _|3|5|6|
. _|22 _|10 |7 |7 |4|5|
. _|23 |12 _|6 |6 |3|4|
. _|24 _|11 |9 |5 _|2|3|
. _|25 |13 |8 _|4|7 |2|
. _|26 _|12 _|7 |8 |6 _|1|
. _|27 |14 |10 |7 |5|7 _|
. |28 |13 |9 |6 |4|6|7|
...
The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 30 2017
STATUS
approved