login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030011
Inverse Euler transform of {1, primes}.
7
1, 1, 1, 1, 1, 1, -1, -2, -3, -2, 4, -1, 5, 3, -4, -5, -9, 3, -3, 15, 19, 0, 6, -39, -27, -22, 5, 57, 50, 107, -49, -96, -142, -213, 83, 138, 468, 365, 0, -327, -1215, -618, -526, 957, 2572, 1831, 1673, -2820, -4516, -6155, -3880, 5998, 9282, 18213, 7414
OFFSET
1,8
LINKS
N. J. A. Sloane, Transforms
FORMULA
Product_{k>=1} 1/(1-x^k)^{a(k)} = 1 + x + Sum_{n>=1} prime(n) * x^(n + 1).
EXAMPLE
(1-x)^(-1) * (1-x^2)^(-1) * (1-x^3)^(-1) * (1-x^4)^(-1) * (1-x^5)^(-1) * (1-x^6)^(-1) * (1-x^7) * (1-x^8)^2 * ... = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + ... .
MATHEMATICA
pp = Prepend[Prime[Range[n = 100]], 1]; s = {};
For[i = 1, i <= n + 1, i++, AppendTo[s, i*pp[[i]] - Sum[s[[d]]*pp[[i - d]], {d, i - 1}]]];
Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i,
n + 1}] (* Jean-François Alcover, May 10 2019 *)
CROSSREFS
Sequence in context: A071438 A328169 A353951 * A286000 A114383 A337442
KEYWORD
sign
STATUS
approved