login
A030009
Euler transform of primes.
11
1, 2, 6, 15, 37, 85, 192, 414, 879, 1816, 3694, 7362, 14480, 28037, 53644, 101379, 189587, 350874, 643431, 1169388, 2108045, 3770430, 6694894, 11804968, 20679720, 35999794, 62298755, 107198541, 183462856, 312357002, 529173060, 892216829, 1497454396, 2502190992
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{n>=1} (1-x^n)^(-prime(n)).
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*ithprime(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*Prime[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(prod(i=1, n, (1-x^i)^-prime(i), 1+x*O(x^n)), n))
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: nth_prime(n))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Cf. A007441.
Sequence in context: A017923 A238830 A018018 * A061261 A335903 A291414
KEYWORD
nonn
AUTHOR
STATUS
approved