OFFSET
0,2
COMMENTS
Terms 1, 2, 6, 15, 37, 85, ... are limits of diagonals in the triangle T(n,k) = A061260: 1 2, 1 3, 2, 1, 5, 6, 2, 1, 7, 11, 6, 2, 1, 11, 23, 15, 6, 2, 1, 15, 40, 32, 15, 6, 2, 1, 22, 73, 67, 37, 15, 6, 2, 1, 30, 120, 134, 79, 37, 15, 6, 2, 1, 42, 202, 255, 172, 85, 37, 15, 6, 2, 1, 56, 320, 470, 348, 187, 85, 37, 15, 6, 2, 1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000
FORMULA
G.f.: Product_{k >= 1} (1 - x^k)^( - numbpart(k + 1)), where numbpart(k) = number of partitions of k, cf. A000041. a(n) = 1/n*Sum_{k = 1..n} b(k)*a(n - k), n>0, a(0) = 1, where b(k) = Sum_{d|k} d*numbpart(d + 1).
a(n) = A061260(2n,n). - Alois P. Heinz, Oct 21 2018
MAPLE
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Apr 14 2017, revised Sep 19 2017
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d PartitionsP[d+1], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 23 2001
STATUS
approved