login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061261
Limits of diagonals in triangle defined in A061260.
2
1, 2, 6, 15, 37, 85, 194, 423, 912, 1917, 3974, 8096, 16302, 32382, 63668, 123851, 238756, 456190, 864821, 1627016, 3039845, 5641884, 10406924, 19083836, 34802782, 63135539, 113965033, 204739662, 366156396, 652001918, 1156200929, 2042173379, 3593341512
OFFSET
0,2
COMMENTS
Terms 1, 2, 6, 15, 37, 85, ... are limits of diagonals in the triangle T(n,k) = A061260: 1 2, 1 3, 2, 1, 5, 6, 2, 1, 7, 11, 6, 2, 1, 11, 23, 15, 6, 2, 1, 15, 40, 32, 15, 6, 2, 1, 22, 73, 67, 37, 15, 6, 2, 1, 30, 120, 134, 79, 37, 15, 6, 2, 1, 42, 202, 255, 172, 85, 37, 15, 6, 2, 1, 56, 320, 470, 348, 187, 85, 37, 15, 6, 2, 1
LINKS
FORMULA
G.f.: Product_{k >= 1} (1 - x^k)^( - numbpart(k + 1)), where numbpart(k) = number of partitions of k, cf. A000041. a(n) = 1/n*Sum_{k = 1..n} b(k)*a(n - k), n>0, a(0) = 1, where b(k) = Sum_{d|k} d*numbpart(d + 1).
a(n) = A061260(2n,n). - Alois P. Heinz, Oct 21 2018
MAPLE
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Apr 14 2017, revised Sep 19 2017
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d PartitionsP[d+1], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A061260.
Sequence in context: A238830 A018018 A030009 * A335903 A291414 A098790
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 23 2001
STATUS
approved