OFFSET
1,2
COMMENTS
Multiset transformation of A000041. - R. J. Mathar, Apr 30 2017
Number of orderless twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. The T(5,3) = 6 orderless twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(11)(1). - Gus Wiseman, Mar 23 2018
LINKS
EXAMPLE
: 1;
: 2, 1;
: 3, 2, 1;
: 5, 6, 2, 1;
: 7, 11, 6, 2, 1;
: 11, 23, 15, 6, 2, 1;
: 15, 40, 32, 15, 6, 2, 1;
: 22, 73, 67, 37, 15, 6, 2, 1;
: 30, 120, 134, 79, 37, 15, 6, 2, 1;
: 42, 202, 255, 172, 85, 37, 15, 6, 2, 1;
MAPLE
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
combinat[numbpart](i)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[PartitionsP[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Vladeta Jovovic, Apr 23 2001
STATUS
approved