login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061260
G.f.: Product_{k>=1} (1-y*x^k)^(-numbpart(k)), where numbpart(k) = number of partitions of k, cf. A000041.
18
1, 2, 1, 3, 2, 1, 5, 6, 2, 1, 7, 11, 6, 2, 1, 11, 23, 15, 6, 2, 1, 15, 40, 32, 15, 6, 2, 1, 22, 73, 67, 37, 15, 6, 2, 1, 30, 120, 134, 79, 37, 15, 6, 2, 1, 42, 202, 255, 172, 85, 37, 15, 6, 2, 1, 56, 320, 470, 348, 187, 85, 37, 15, 6, 2, 1, 77, 511, 848, 697, 397, 194, 85, 37, 15, 6, 2, 1
OFFSET
1,2
COMMENTS
Multiset transformation of A000041. - R. J. Mathar, Apr 30 2017
Number of orderless twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. The T(5,3) = 6 orderless twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(11)(1). - Gus Wiseman, Mar 23 2018
EXAMPLE
: 1;
: 2, 1;
: 3, 2, 1;
: 5, 6, 2, 1;
: 7, 11, 6, 2, 1;
: 11, 23, 15, 6, 2, 1;
: 15, 40, 32, 15, 6, 2, 1;
: 22, 73, 67, 37, 15, 6, 2, 1;
: 30, 120, 134, 79, 37, 15, 6, 2, 1;
: 42, 202, 255, 172, 85, 37, 15, 6, 2, 1;
MAPLE
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
combinat[numbpart](i)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[PartitionsP[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Alois P. Heinz *)
CROSSREFS
Row sums: A001970, first column: A000041.
T(2,n) gives A061261,
Sequence in context: A104446 A131345 A134423 * A152097 A119442 A064861
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Apr 23 2001
STATUS
approved