login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned. 143
1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

These are different from plane partitions.

For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006

Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..5000 (terms n=1..500 from T. D. Noe)

Vaclav Kotesovec, Screenshot - A closed form formula for the constant c

Gus Wiseman, Comcategories and Multiorders (pdf version)

Gus Wiseman, On the Categorical Structure of Weakly Ordered Sequences of Integer Partitions

Gus Wiseman, Sequences enumerating triangles of integer partitions

FORMULA

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003

From Vaclav Kotesovec, Mar 27 2016: (Start)

a(n) ~ c * 5^(n/4), where

c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0

c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1

c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2

c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3

(End)

EXAMPLE

G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...

If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).

MAPLE

with(combinat):

b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

      b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015

MATHEMATICA

Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]

(* second program: *)

b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Jan 20 2016, after Alois P. Heinz *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

CROSSREFS

Cf. A063835, A196545.

Cf. A036036, A048996, A055887.

Cf. A006906, A270995.

Cf. A007425, A047966, A047968, A271619, A279375, A279784-A279791.

Row sums of A321449.

Column k=2 of A323718.

Cf. A327769.

Sequence in context: A318396 A034953 A086737 * A139117 A226736 A066708

Adjacent sequences:  A063831 A063832 A063833 * A063835 A063836 A063837

KEYWORD

nonn,nice

AUTHOR

Wouter Meeussen, Aug 21 2001

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 03:14 EST 2019. Contains 330013 sequences. (Running on oeis4.)