login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034953
Triangular numbers (A000217) with prime indices.
50
3, 6, 15, 28, 66, 91, 153, 190, 276, 435, 496, 703, 861, 946, 1128, 1431, 1770, 1891, 2278, 2556, 2701, 3160, 3486, 4005, 4753, 5151, 5356, 5778, 5995, 6441, 8128, 8646, 9453, 9730, 11175, 11476, 12403, 13366, 14028, 15051, 16110, 16471, 18336, 18721, 19503
OFFSET
1,1
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Given a rectangular prism with sides 1, p, p^2 for p = n-th prime (n > 1), the area of the six sides divided by the volume gives a remainder which is 4*a(n). - J. M. Bergot, Sep 12 2011
The infinite sum over the reciprocals is given by 2*A179119. - Wolfdieter Lang, Jul 10 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Triangular Number.
FORMULA
a(n) = A000217(A000040(n)). - Omar E. Pol, Jul 27 2009
a(n) = Sum_{k=1..prime(n)} k. - Wesley Ivan Hurt, Apr 27 2021
Product_{n>=1} (1 - 1/a(n)) = A307868. - Amiram Eldar, Nov 07 2022
MAPLE
a:= n-> (p-> p*(p+1)/2)(ithprime(n)):
seq(a(n), n=1..65); # Alois P. Heinz, Apr 20 2022
MATHEMATICA
t[n_] := n(n + 1)/2; Table[t[Prime[n]], {n, 44}] (* Robert G. Wilson v, Aug 12 2004 *)
(#(# + 1))/2&/@Prime[Range[50]] (* Harvey P. Dale, Feb 27 2012 *)
With[{nn=200}, Pick[Accumulate[Range[nn]], Table[If[PrimeQ[n], 1, 0], {n, nn}], 1]] (* Harvey P. Dale, Mar 05 2023 *)
PROG
(PARI) forprime(p=2, 1e3, print1(binomial(p+1, 2)", ")) \\ Charles R Greathouse IV, Jul 19 2011
(PARI) apply(n->binomial(n+1, 2), primes(100)) \\ Charles R Greathouse IV, Jun 04 2013
(Haskell)
a034953 n = a034953_list !! (n-1)
a034953_list = map a000217 a000040_list
-- Reinhard Zumkeller, Sep 23 2011
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Oct 15 1998
STATUS
approved