OFFSET
0,1
COMMENTS
Also, the asymptotic mean of A162511. - Amiram Eldar, Sep 18 2022
LINKS
V. Sitaramaiah and M. V. Subbarao, Some asymptotic formulae involving powers of arithmetic functions, Number Theory, Madras 1987, Springer, 1989, pp. 201-234, alternative link.
FORMULA
Equals lim_{m->oo} (1/m)*Sum_{k=1..m} phi(k)/psi(k).
Equals Product_{p prime} (1 - 2/(p * (p+1))).
Equals A065472 / zeta(2). - Amiram Eldar, Sep 18 2022
EXAMPLE
0.47168061361299786807523563308048208742592638200698...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 1, 2}, {0, -4, 6}, m]; RealDigits[(2/3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
PROG
(PARI) prodeulerrat(1 - 2/(p*(p+1))) \\ Vaclav Kotesovec, Sep 19 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 02 2019
EXTENSIONS
More digits from Vaclav Kotesovec, Sep 19 2020
STATUS
approved