login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065472 Decimal expansion of Product_{p prime} (1 - 1/(p+1)^2). 8
7, 7, 5, 8, 8, 3, 5, 1, 0, 0, 0, 3, 8, 9, 5, 4, 9, 9, 6, 2, 0, 4, 0, 4, 2, 8, 4, 4, 2, 7, 9, 0, 0, 6, 1, 1, 4, 8, 2, 4, 1, 3, 4, 6, 5, 9, 7, 3, 0, 1, 6, 2, 7, 6, 2, 2, 1, 0, 6, 3, 1, 1, 6, 4, 6, 1, 3, 8, 7, 6, 4, 9, 2, 4, 9, 7, 4, 5, 6, 9, 9, 5, 3, 7, 1, 9, 3, 1, 3, 2, 3, 3, 1, 2, 8, 1, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The probablity that two randomly chosen squarefree numbers are coprime. - Amiram Eldar, Aug 04 2020

LINKS

Table of n, a(n) for n=0..97.

G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]

László Tóth, The unitary analogue of Pillai's arithmetical function, Collectanea Mathematica, Vol. 40, No. 1 (1989), pp. 19-30.

FORMULA

Equals lim_{n->oo} (Pi^2/(3*n^2*log(n))) * Sum_{k=1..n} A145388(k). - Amiram Eldar, May 14 2019

EXAMPLE

0.7758835100038954996204042844279...

MATHEMATICA

digits = 98; Exp[NSum[(-1)^n*(2^(n-1)-2)*PrimeZetaP[n-1]/(n-1), {n, 3, Infinity}, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)

PROG

(PARI) prodeulerrat(1 - 1/(p+1)^2) \\ Amiram Eldar, Mar 17 2021

CROSSREFS

Cf. A038063, A078091, A116393, A145388.

Sequence in context: A278811 A021932 A244675 * A081112 A096151 A021567

Adjacent sequences:  A065469 A065470 A065471 * A065473 A065474 A065475

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane, Nov 19 2001

EXTENSIONS

Definition corrected by Dan Asimov, Apr 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 03:18 EDT 2021. Contains 348211 sequences. (Running on oeis4.)