login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038063
Product_{k>=1}1/(1 - x^k)^a(k) = 1 + 2x.
12
2, -3, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986
OFFSET
1,1
COMMENTS
Apart from initial terms, exponents in expansion of A065472 as a product zeta(n)^(-a(n)).
LINKS
FORMULA
a(n) = 1/n*Sum_{d divides n} (-1)^(d+1)*mobius(n/d)*2^d. - Vladeta Jovovic, Sep 06 2002
G.f.: Sum_{n>=1} moebius(n)*log(1 + 2*x^n)/n, where moebius(n)=A008683(n). - Paul D. Hanna, Oct 13 2010
For n == 0, 1, 3 (mod 4), a(n) = (-1)^(n+1)*A001037(n), which for n>1 also equals (-1)^(n+1)*A059966(n) = (-1)^(n+1)*A060477(n).
For n == 2 (mod 4), a(n) = -(A001037(n) + A001037(n/2)). - George Beck and Max Alekseyev, May 23 2016
a(n) ~ -(-1)^n * 2^n / n. - Vaclav Kotesovec, Jun 12 2018
PROG
(PARI) {a(n)=polcoeff(sum(k=1, n, moebius(k)/k*log(1+2*x^k+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 13 2010
KEYWORD
sign
AUTHOR
Christian G. Bower, Jan 04 1999
STATUS
approved