The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215412 McKay-Thompson series of class 18C for the Monster group with a(0) = -2. 7
 1, -2, 3, -2, 3, -6, 10, -12, 15, -22, 30, -36, 44, -60, 78, -96, 117, -150, 190, -228, 276, -340, 420, -504, 603, -732, 885, -1052, 1245, -1488, 1770, -2088, 2454, -2902, 3420, -3996, 4666, -5460, 6378, -7400, 8583, -9972, 11566, -13344, 15378, -17752, 20448 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). A058533, A123676, A215412, A058644, A215413 are all essentially the same sequence. - N. J. A. Sloane, Aug 09 2012 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). See Table 4 18C. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of -3 + psi(q) / (q * psi(q^9)) + 3 * q * psi(q^9) / psi(q) in powers of q where psi() is a Ramanujan  theta function. Expansion of (1/q) * (psi(q^3)^2 / (psi(q) * psi(q^9)))^2 in powers of q where psi() is a Ramanujan theta function. Expansion of 3 * b(q) * c(q) * (b(q^6)^2 / (b(q^2) * c(q^2) * b(q^3)))^2 in powers of q where b(), c() are cubic AGM theta functions. Expansion of (eta(q) * eta(q^6)^4 * eta(q^9))^2 / (eta(q^2) * eta(q^3) * eta(q^18))^4 in powers of q. Euler transform of period 18 sequence [ -2, 2, 2, 2, -2, -2, -2, 2, 0, 2, -2, -2, -2, 2, 2, 2, -2, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - 1) * (v - u^2) - 4 * v * (u - 1). G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227587. - Michael Somos, Jul 16 2013 a(n) = A058533(n) = A123676(n) = A215413(n) unless n=0. a(n) = -(-1)^n * A227585(n). - Michael Somos, Jul 16 2013 Convolution square of A112176. - Michael Somos, Jul 16 2013 a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017 EXAMPLE 1/q - 2 + 3*q - 2*q^2 + 3*q^3 - 6*q^4 + 10*q^5 - 12*q^6 + 15*q^7 - 22*q^8 + ... MATHEMATICA QP = QPochhammer; s = (QP[q] * QP[q^6]^4 * QP[q^9])^2 / (QP[q^2] * QP[q^3] * QP[q^18])^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *) PROG (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^4 * eta(x^9 + A))^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^18 + A))^4, n))} CROSSREFS Cf. A058533, A112176, A123676, A215413, A227585, A227587. Sequence in context: A336953 A193917 A089135 * A227585 A038063 A264506 Adjacent sequences:  A215409 A215410 A215411 * A215413 A215414 A215415 KEYWORD sign AUTHOR Michael Somos, Aug 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 16:31 EDT 2021. Contains 347598 sequences. (Running on oeis4.)