login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215412
McKay-Thompson series of class 18C for the Monster group with a(0) = -2.
7
1, -2, 3, -2, 3, -6, 10, -12, 15, -22, 30, -36, 44, -60, 78, -96, 117, -150, 190, -228, 276, -340, 420, -504, 603, -732, 885, -1052, 1245, -1488, 1770, -2088, 2454, -2902, 3420, -3996, 4666, -5460, 6378, -7400, 8583, -9972, 11566, -13344, 15378, -17752, 20448
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
A058533, A123676, A215412, A058644, A215413 are all essentially the same sequence. - N. J. A. Sloane, Aug 09 2012
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). See Table 4 18C.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of -3 + psi(q) / (q * psi(q^9)) + 3 * q * psi(q^9) / psi(q) in powers of q where psi() is a Ramanujan theta function.
Expansion of (1/q) * (psi(q^3)^2 / (psi(q) * psi(q^9)))^2 in powers of q where psi() is a Ramanujan theta function.
Expansion of 3 * b(q) * c(q) * (b(q^6)^2 / (b(q^2) * c(q^2) * b(q^3)))^2 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^6)^4 * eta(q^9))^2 / (eta(q^2) * eta(q^3) * eta(q^18))^4 in powers of q.
Euler transform of period 18 sequence [ -2, 2, 2, 2, -2, -2, -2, 2, 0, 2, -2, -2, -2, 2, 2, 2, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - 1) * (v - u^2) - 4 * v * (u - 1).
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227587. - Michael Somos, Jul 16 2013
a(n) = A058533(n) = A123676(n) = A215413(n) unless n=0.
a(n) = -(-1)^n * A227585(n). - Michael Somos, Jul 16 2013
Convolution square of A112176. - Michael Somos, Jul 16 2013
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
1/q - 2 + 3*q - 2*q^2 + 3*q^3 - 6*q^4 + 10*q^5 - 12*q^6 + 15*q^7 - 22*q^8 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q] * QP[q^6]^4 * QP[q^9])^2 / (QP[q^2] * QP[q^3] * QP[q^18])^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^4 * eta(x^9 + A))^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^18 + A))^4, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 09 2012
STATUS
approved