login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 18C for the Monster group with a(0) = -2.
7

%I #36 Mar 12 2021 22:24:46

%S 1,-2,3,-2,3,-6,10,-12,15,-22,30,-36,44,-60,78,-96,117,-150,190,-228,

%T 276,-340,420,-504,603,-732,885,-1052,1245,-1488,1770,-2088,2454,

%U -2902,3420,-3996,4666,-5460,6378,-7400,8583,-9972,11566,-13344,15378,-17752,20448

%N McKay-Thompson series of class 18C for the Monster group with a(0) = -2.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C A058533, A123676, A215412, A058644, A215413 are all essentially the same sequence. - _N. J. A. Sloane_, Aug 09 2012

%H G. C. Greubel, <a href="/A215412/b215412.txt">Table of n, a(n) for n = -1..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994). See Table 4 18C.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of -3 + psi(q) / (q * psi(q^9)) + 3 * q * psi(q^9) / psi(q) in powers of q where psi() is a Ramanujan theta function.

%F Expansion of (1/q) * (psi(q^3)^2 / (psi(q) * psi(q^9)))^2 in powers of q where psi() is a Ramanujan theta function.

%F Expansion of 3 * b(q) * c(q) * (b(q^6)^2 / (b(q^2) * c(q^2) * b(q^3)))^2 in powers of q where b(), c() are cubic AGM theta functions.

%F Expansion of (eta(q) * eta(q^6)^4 * eta(q^9))^2 / (eta(q^2) * eta(q^3) * eta(q^18))^4 in powers of q.

%F Euler transform of period 18 sequence [ -2, 2, 2, 2, -2, -2, -2, 2, 0, 2, -2, -2, -2, 2, 2, 2, -2, 0, ...].

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - 1) * (v - u^2) - 4 * v * (u - 1).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227587. - _Michael Somos_, Jul 16 2013

%F a(n) = A058533(n) = A123676(n) = A215413(n) unless n=0.

%F a(n) = -(-1)^n * A227585(n). - _Michael Somos_, Jul 16 2013

%F Convolution square of A112176. - _Michael Somos_, Jul 16 2013

%F a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Sep 08 2017

%e 1/q - 2 + 3*q - 2*q^2 + 3*q^3 - 6*q^4 + 10*q^5 - 12*q^6 + 15*q^7 - 22*q^8 + ...

%t QP = QPochhammer; s = (QP[q] * QP[q^6]^4 * QP[q^9])^2 / (QP[q^2] * QP[q^3] * QP[q^18])^4 + O[q]^50; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 14 2015, adapted from PARI *)

%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^4 * eta(x^9 + A))^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^18 + A))^4, n))}

%Y Cf. A058533, A112176, A123676, A215413, A227585, A227587.

%K sign

%O -1,2

%A _Michael Somos_, Aug 09 2012