login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227587
Expansion of (phi(-q^3)^2 / (phi(-q) * phi(-q^9)))^2 in powers of q where phi() is a Ramanujan theta function.
2
1, 4, 12, 24, 44, 72, 120, 192, 300, 456, 680, 1008, 1464, 2104, 2976, 4176, 5804, 7992, 10920, 14800, 19944, 26688, 35504, 46944, 61752, 80828, 105288, 136536, 176288, 226728, 290448, 370720, 471468, 597600, 755032, 950976, 1194216, 1495352, 1867344, 2325648
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 + 4 * q * chi(-q^3)^2 / (chi(-q) * chi(-q^9))^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of 1 + 4 * b(q^2) * c(q^6) / (b(q) * c(q^3)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^2) * eta(q^3)^4 * eta(q^18) / (eta(q) * eta(q^6) * eta(q^9))^2)^2 in powers of q.
Euler transform of period 18 sequence [4, 2, -4, 2, 4, -2, 4, 2, 0, 2, 4, -2, 4, 2, -4, 2, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215412.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + 4*q + 12*q^2 + 24*q^3 + 44*q^4 + 72*q^5 + 120*q^6 + 192*q^7 + 300*q^8 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(3*k))^4 * (1-x^(18*k)) / ((1-x^k) * (1-x^(6*k)) * (1-x^(9*k)))^2)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q^2]* eta[q^3]^4*eta[q^18]/(eta[q]*eta[q^6]*eta[q^9])^2)^2, {q, 0, 50}], q] (* G. C. Greubel, Aug 09 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^4 * eta(x^18 + A) / (eta(x + A) * eta(x^6 + A) * eta(x^9 + A))^2)^2, n))};
CROSSREFS
Cf. A215412.
Sequence in context: A301211 A008195 A001209 * A128624 A372435 A321879
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 16 2013
STATUS
approved