login
A227586
Numbers which occur exactly once in row 1 of the array at A227581.
2
1, 5, 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 166, 176, 186, 196, 206, 216, 226, 236, 246, 257, 267, 277, 287, 297, 307, 317, 327, 337, 347, 357, 367, 377, 387, 397, 407, 417, 427, 437, 447, 457, 467, 477, 487, 497, 508, 518, 528
OFFSET
1,2
COMMENTS
It appears that every positive integer k occurs exactly once or exactly twice as a solution of H(n) - H(n+k) < g-1 < H(n) - H(n+k-1) as n runs through the positive integers, where H denotes harmonic number, and g denotes the Euler-Mascheroni constant. See A227581.
LINKS
EXAMPLE
That 5 occurs just once, and 4 and 6 each occur twice, corresponds to these inequalities:
H(6) - H(6 + 4) < g-1 < H(6) - H(6 + 3),
H(7) - H(7 + 4) < g-1 < H(7) - H(7 + 3),
H(8) - H(8 + 5) < g-1 < H(8) - H(8 + 4),
H(9) - H(9 + 6) < g-1 < H(9) - H(9 + 5),
H(10) - H(10 + 6) < g-1 < H(10) - H(10 + 5).
MATHEMATICA
z = 1500; r[n_] := r[n] = Module[{Nn = N[n, 50]}, NestWhile[# + 1 &, Floor[(1 + n)/2], ! HarmonicNumber[1] + HarmonicNumber[Nn] - HarmonicNumber[Nn + #] < EulerGamma &]]; u[k_] := Length[Split[Table[r[n], {n, z}]][[k]]]; t = Table[u[k], {k, 1, z/2}]; Flatten[Position[t, 1]] (* A227586 *)
CROSSREFS
Cf. A227581.
Sequence in context: A274356 A275178 A171787 * A335416 A018197 A061874
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 17 2013
STATUS
approved