login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307865
a(n) is the number of natural bases b < 2n+1 such that b^n == -1 (mod 2n+1).
1
0, 1, 2, 3, 0, 5, 6, 1, 8, 9, 0, 11, 0, 1, 14, 15, 0, 1, 18, 1, 20, 21, 0, 23, 0, 1, 26, 1, 0, 29, 30, 1, 0, 33, 0, 35, 36, 1, 0, 39, 0, 41, 4, 1, 44, 9, 0, 1, 48, 1, 50, 51, 0, 53, 54, 1, 56, 1, 0, 1, 0, 1, 2, 63, 0, 65, 0, 1, 68, 69, 0, 1, 0, 1, 74, 75, 0, 1, 78, 1, 0, 81, 0, 83, 0, 1, 86
OFFSET
0,3
COMMENTS
For n > 0, a(n) = n if and only if 2n+1 is prime.
Note that a(n) < n if and only if 2n+1 is composite.
Conjecture: if 2n+1 is an absolute Euler pseudoprime, then a(n) = 0.
MATHEMATICA
a[n_] := Length[Select[Range[2n], PowerMod[#, n, 2n+1] == 2n &]]; Array[a, 100] (* Amiram Eldar, May 02 2019 *)
PROG
(PARI) a(n) = sum(b=1, 2*n, Mod(b, 2*n+1)^n == -1); \\ Michel Marcus, May 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, May 02 2019
EXTENSIONS
More terms from Amiram Eldar, May 02 2019
STATUS
approved